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Abstract. We calculate the so-called hard spectator corrections in O(αs) in the leading-twist approximation
to the decay widths for B → K∗γ and B → ργ decays and their charge conjugates, using the Large Energy
Effective Theory (LEET) techniques. Combined with the hard vertex and annihilation contributions, they
are used to compute the branching ratios for these decays in the next-to-leading order (NLO) in the strong
coupling αs and in leading power in ΛQCD/MB . These corrections are found to be large, leading to the
inference that the theoretical branching ratios for the decays B → K∗γ in the LEET approach can be
reconciled with current data only for significantly lower values of the form factors than their estimates in the
QCD sum rule and Lattice QCD approaches. However, the form factor related uncertainties mostly cancel in
the ratios B(B → ργ)/B(B → K∗γ) and∆ = (∆+0+∆−0)/2, where∆±0 = Γ (B± → ρ±γ)/[2Γ (B0(B̄0) →
ρ0γ)] − 1, and hence their measurements will provide quantitative information on the standard model
parameters, in particular the ratio of the CKM matrix elements |Vtd/Vts| and the inner angle α of the
CKM-unitarity triangle. We also calculate direct CP asymmetry for the decays B± → ρ±γ and find, in
conformity with the observations made in the existing literature, that the hard spectator contributions
significantly reduce the asymmetry arising from the vertex corrections. In addition, the sensitivity of the
CP asymmetry on the underlying parameters is found to be discomfortingly large.

1 Introduction

There exists a lot of theoretical interest in measuring the
branching ratios for the inclusive radiative decays B →
Xsγ and B → Xdγ. The corresponding exclusive radia-
tive decays B → K∗γ and B → ργ, and related de-
cays involving higher K∗ and ρ-resonances, are experi-
mentally more tractable but theoretically less clean. In
particular, the form factors entering in these decays have
to be determined from a non-perturbative approach such
as lattice-QCD or QCD sum rules. Alternatively, these
form factors can be related to the ones in the semilep-
tonic decays B → ρ�ν� using heavy quark symmetry and
determined from data on the semileptonic decays. As the
heavy quark symmetry is broken by perturbative QCD
and non-perturbative power corrections, these effects will
have to be taken into account at some level. This should
enable us in principle to predict the branching ratios in
radiative decays in a theoretically controlled way. In the
Standard Model (SM), measurements of the radiative de-
cays in question, as well as their semileptonic counterparts
B → (K,K∗, π, ρ)�+�−, will constrain the matrix ele-
ments of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
[1]. In particular, the ratios of the branching ratios B(B →
ργ)/B(B → K∗γ) would provide independent and com-

plementary information on the CKM matrix element ra-
tio |Vtd/Vts|. Likewise, the isospin-violating ratios ∆±0 =
Γ (B± → ρ±γ)]/[2Γ (B0(B̄0) → ρ0γ)] − 1 and the CP-
asymmetry in the rate difference ACP(ρ±γ) = [Γ (B− →
ρ−γ)− Γ (B+ → ρ+γ)]/[Γ (B− → ρ−γ) + Γ (B+ → ρ+γ)]
will determine the angle α, which is one of the three in-
ner angles of the CKM-unitarity triangle. They are also
sensitive to the presence of physics beyond the SM, such
as supersymmetry [2,3]. It is therefore imperative to firm
up theoretical predictions in exclusive decays B → V γ(∗),
with V = ρ or K∗, for precision tests of the SM and to
interpret data for possible new physics effects in these de-
cays.

To compute the branching ratios reliably, one needs to
calculate at least the explicit O(αs) improvements to the
lowest order decay widths and take into account the lead-
ing power corrections in a well-defined theoretical frame-
work, such as the heavy quark effective theory (HQET).
More specifically, theoretically improved radiative decay
widths for B → V γ, require the calculation of the renor-
malization group effects in the appropriate Wilson coeffi-
cients in the effective Hamiltonian [4], an explicit O(αs)
calculation of the matrix elements involving the hard ver-
tex corrections [5–7], annihilation contributions [8–10],
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which are more important in the decays B → ργ, and
the so-called hard-spectator contributions involving (vir-
tual) hard gluon radiative corrections off the spectator
quarks in the B-,K∗-, and ρ-mesons [11,12]. These correc-
tions will shift the theoretical branching ratios and induce
CP-asymmetries in the decay rates, where the latter are
expected to be measurable only in the CKM-suppressed
decays B → ργ in the SM. In addition, the annihila-
tion and the hard gluon radiative corrections explicitly
break isospin symmetry, leading generically to non-zero
values for ∆±0 in B → ργ decays, and to a lesser ex-
tent also for the B → K∗γ decays. While the former have
been calculated in the lowest order in [8,9], and the ex-
plicit O(αs) corrections to the leading-twist (twist-two)
annihilation amplitudes are found to vanish in the chi-
ral limit [10], the commensurate contributions from the
hard spectator diagrams have to be included in the com-
plete O(αs)-improved estimates. In this paper we compute
these corrections to the leading-twist meson distribution
amplitudes, borrowing techniques from the so-called Large
Energy Effective Theory (LEET) [13,14]. In doing this,
we correct several errors in the derivation of the decay
widths for B → ργ, presented in the earlier version of this
paper, and discuss in addition the decays B → K∗γ at
some length in view of its current experimental interest.
In a closely related context, a part of these corrections
were calculated some time ago by Beneke and Feldmann
[12]. With the remaining contribution of the hard spec-
tator corrections presented here, and in the meanwhile
also reported by Beneke, Feldmann and Seidel [15], and
by Bosch and Buchalla [16], the decay rates for B → K∗γ
and B → ργ are now quantified in the LEET approach, up
to and including the NLO corrections in αs and to leading
power in ΛQCD/M , where M is the B-meson mass, in the
leading-twist approximation. These predictions have to be
confronted with data, which we undertake at some length
in this paper.

We use the O(αs)-improved estimates for the decay
rate for B → K∗γ, presented here, the corresponding the-
oretical results for the inclusive decay rate for B → Xsγ,
obtained in [4,17,18], and current data on the branching
ratios for B → K∗γ [19–21] and B → Xsγ [22–24] to de-
termine the form factor ξ

(K∗)
⊥ (0) in the LEET approach.

This yields ξ(K
∗)

⊥ (0) = 0.26±0.04, which is similar, though
not identical, to the result ξ(K

∗)
⊥ (0) = 0.24±0.06 obtained

in [15] in the same framework, using the experimental
branching ratio for B → K∗γ only. Relating the LEET-
theory form factor ξ

(K∗)
⊥ (0) to the full QCD form factor

T
(K∗)
1 (0), with the help of the O(αs)-relation calculated in
[12], yields T (K∗)

1 (0) = 0.28±0.04. This is to be compared
with a typical estimate in the light-cone QCD (LC-QCD)
sum rule, T (K∗)

1 (0) = 0.38±0.05 [25,26] and from the lat-
tice QCD simulations T (K∗)

1 (0) = 0.32+0.04
−0.02 [27]. Thus, the

form factor T
(K∗)
1 (0) in the LEET approach is found to

be smaller compared to the values obtained in the other
two methods. At this stage, the source of this mismatch
is not well understood.

What concerns the decay B → ργ, we combine the
current determination of ξ(K

∗)
⊥ (0) in the LEET approach

with an estimate of the SU(3)-breaking effects in the form
factors, using a light-cone QCD sum rule result for this
purpose, ξ(ρ)⊥ /ξ

(K∗)
⊥ = T

(ρ)
1 (0)/T (K∗)

1 (0) � 0.76±0.06 [28],
yielding ξ

(ρ)
⊥ = 0.20± 0.04. This allows us to calculate the

branching ratios for the decays B0 → ρ0γ, B+ → ρ+γ and
their charge conjugates. However, as we show by explicit
calculations in this paper, a parametrically more stable
quantity for this purpose is the ratio B(B → ργ)/B(B →
K∗γ). Theoretically, this ratio can be expressed as

Bth(B → ργ)
Bth(B → K∗γ)

= Sρ

∣∣∣∣VtdVts

∣∣∣∣
2 (1− m2

ρ/M
2)3

(1− m2
K∗/M2)3

ζ2

× [1 +∆R(ρ/K∗)] ,

where ζ = ξ
(ρ)
⊥ (0)/ξ(K

∗)
⊥ (0) is the ratio of the HQET/

LEET form factors, Sρ = 1(1/2) are the isospin weights
for the ρ±(ρ0)- meson, and the dominant dependence on
the CKM matrix elements is made explicit. We calculate
∆R(ρ/K∗), to leading order in αs and ΛQCD/M , includ-
ing the leading order annihilation contributions in B → ργ
decays, and study its sensitivity to the underlying input
parameters. Knowing ∆R(ρ/K∗) and ζ, the branching
ratio for B → ργ can be predicted in terms of the al-
ready known branching ratios for B → K∗γ. Averaged
over the charge conjugates, we find B̄th(B± → ρ±γ) =
[0.85 ± 0.30(th) ± 0.10(exp)] × 10−6 and B̄th(B0/B̄0 →
ρ0γ) = [0.49±0.17(th)±0.04(exp)]×10−6, where the the-
oretical uncertainty is dominated by the current dispersion
on the CKM parameters and the meson wave functions.
The experimental uncertainty enters through the present
measurements of the branching ratios for B → K∗γ. The
isospin-violating ratios ∆±0 and the charge conjugate av-
eraged ratio ∆ = (∆+0 + ∆−0)/2 are also calculated to
the stated level of theoretical accuracy. The resulting cor-
rections are found to be small in ∆, in particular in the
allowed CKM parameter range determined from the CKM
unitarity fits in the SM.

Finally, we compute the leading order CP-asymmetry
ACP(ρ±γ) involving the decays B± → ρ±γ. The CP-
asymmetry arises due to the interference of the various
penguin amplitudes which have clashing weak phases,
with the required strong interaction phase provided by
the O(αs) corrections entering the penguin amplitudes
via the Bander-Silverman-Soni (BSS) mechanism [29]. We
find that the hard spectator corrections significantly re-
duce the CP-asymmetry calculated from the vertex con-
tribution alone in B → ργ decays, in line with the observa-
tion made by Bosch and Buchalla [16]. However, this can-
cellation, and the resulting CP asymmetry, depend rather
sensitively on the ratio of the quark masses mc/mb. This
parametric dependence, combined with the scale depen-
dence of ACP(ρ±γ), already discussed in [16], makes the
prediction of direct CP-asymmetry rather unreliable, as
we show explicitly in this paper.

This paper is organized as follows: In Sect. 2, we intro-
duce the underlying theoretical framework (LEET) and
the relations involving the B → V (V = ρ,K∗) form
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factors resulting from the LEET symmetry, and sketch
the explicit O(αs)-breaking of these relations. The hard
scattering amplitude involving the spectator diagrams in
B → V γ decays are calculated in Sect. 3. Explicit forms
of the O(αs)-corrected matrix elements for these decays
are given in Sect. 4. Numerical results for the branching
ratios for B → K∗γ and B → ργ are presented in Sect. 5.
Isospin-violating ratios and the charge conjugate averaged
ratio ∆ for the decays B → ργ, and the CP-violating
asymmetry ACP(ρ±γ) are given in Sect. 6. We conclude
with a brief summary and some concluding remarks in
Sect. 7.

2 LEET symmetry and symmetry breaking
in perturbative QCD

For the sake of definiteness, we shall work out explicitly
the decays B → ργ; the differences between these and
the decays B → K∗γ lie mainly in the CKM matrix ele-
ments and in the wave functions of the final-state hadrons,
and they will be specified in Sects. 4 and 5. The effective
Hamiltonian for the B → ργ decays (equivalently b → dγ
decay) at the scale µ = O(mb), where mb is the b-quark
mass, is given by

Heff =
GF√
2

{
VubV

∗
ud

[
C

(u)
1 (µ)O(u)

1 (µ) + C
(u)
2 (µ)O(u)

2 (µ)
]

+VcbV
∗
cd

[
C

(c)
1 (µ)O(c)

1 (µ) + C
(c)
2 (µ)O(c)

2 (µ)
]
(2.1)

−VtbV
∗
td

[
Ceff

7 (µ)O7(µ) + Ceff
8 (µ)O8(µ)

]
+ . . .

}
,

where we have shown the contributions which will be im-
portant in our calculations. Operators O(q)

1 and O(q)
2 , (q =

u, c), are the standard four-fermion operators:

O(q)
1 = (d̄αγµ(1− γ5)qβ) (q̄βγµ(1− γ5)bα),

O(q)
2 = (d̄αγµ(1− γ5)qα) (q̄βγµ(1− γ5)bβ), (2.2)

and O7 and O8 are the electromagnetic and chromomag-
netic penguin operators, respectively:

O7 =
emb
8π2 (d̄ασ

µν(1 + γ5)bα)Fµν ,

O8 =
gsmb
8π2 (d̄ασµν(1 + γ5)T aαβbβ)G

a
µν . (2.3)

Here, e and gs are the electric and colour charges, Fµν and
Gaµν are the electromagnetic and gluonic field strength
tensors, respectively, T aαβ are the colour SU(Nc) group
generators, and the quark colour indices α and β and glu-
onic colour index a are written explicitly. Note that in the
operators O7 and O8 the d-quark mass contributions are
negligible and therefore omitted. The coefficients C

(q)
1 (µ)

and C
(q)
2 (µ) in (2.1) are the usual Wilson coefficients cor-

responding to the operators O(q)
1 and O(q)

2 while the coef-
ficients Ceff

7 (µ) and Ceff
8 (µ) include also the effects of the

QCD penguin four-fermion operators O5 and O6 which
are assumed to be present in the effective Hamiltonian
(2.1) and denoted by ellipses there. For details and nu-
merical values of these coefficients, see [30] and reference
therein. We use the standard Bjorken-Drell convention
[31] for the metric and the Dirac matrices; in particu-
lar γ5 = iγ0γ1γ2γ3, and the totally antisymmetric Levi-
Civita tensor εµνρσ is defined as ε0123 = +1.

The effective Hamiltonian (2.1) sandwiched between
the B- and ρ-meson states can be expressed in terms of
matrix elements of bilinear quark currents inducing heavy-
light transitions. These matrix elements are dominated
by strong interactions at small momentum transfer and
cannot be calculated perturbatively. The general decom-
position of the matrix elements on all possible Lorentz
structures (Vector, Axial-vector and Tensor) admits seven
scalar functions (form factors): V , Ai, and Ti (i = 1, 2, 3)
of the momentum squared q2 transferred from the heavy
meson to the light one. When the energy of the final light
meson E is large (the large recoil limit), one can expand
the interaction of the energetic quark in the meson with
the soft gluons in terms of ΛQCD/E. Using then the effec-
tive heavy quark theory for the interaction of the heavy
b-quark with the gluons, one can derive non-trivial rela-
tions between the soft contributions to the form factors
[14]. The resulting theory (LEET) reduces the number
of independent form factors from seven in the B → ρ
transitions to two in this limit. The relations among the
form factors in the symmetry limit are broken by pertur-
bative QCD radiative corrections arising from the vertex
renormalization and the hard spectator interactions. To
incorporate both types of QCD corrections, a tentative
factorization formula for the heavy-light form factors at
large recoil and at leading order in the inverse heavy me-
son mass was introduced in [12]:

fk(q2) = C⊥kξ⊥ + C‖kξ‖ + ΦB ⊗ Tk ⊗ Φρ, (2.4)

where fk(q2) is any of the seven independent form factors
in the B → ρ transitions at hand; ξ⊥ and ξ‖ are the two in-
dependent form factors remaining in the LEET-symmetry
limit; Tk is a hard-scattering kernel calculated in O(αs)
containing, in general, an end-point divergence in the de-
cay B → ργ which must be regulated somehow; ΦB and Φρ
are the light-cone distribution amplitudes of the B- and ρ-
meson convoluted with Tk; Ck = 1 + O(αs) are the hard
vertex renormalization coefficients. Hard spectator correc-
tions contribute to the convolution term in (2.4). They
break factorization, implying that their contribution can
not be absorbed in the redefinition of the first two terms,
and they are suppressed by one power of the strong cou-
pling αs relative to the soft contributions defined by ξ⊥
and ξ‖. To compute the hard spectator contribution to the
B → ργ decay amplitude, one has to assume distribution
amplitudes for the initial and final mesons. To leading
order in the inverse B-meson mass, the dominant con-
tribution is from the leading-twist (twist-two) light-cone
distribution amplitudes of the mesons. In this approach
both the B- and ρ-mesons can be described by two con-
stituents only, for example, B− = (bū) and ρ− = (dū),
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and the higher Fock states involving in addition gluons
are ignored. We show here that the tentative factorization
Ansatz given in (2.4) holds and derive the explicit cor-
rections to the amplitudes B → V γ, where V = ρ,K∗ in
the LEET approach. We note that an O(αs) proof of the
validity of (2.4) has, in the meanwhile, also been provided
by Beneke, Feldmann and Seidel [15], and by Bosch and
Buchalla [16].

We restrict ourselves with the following kinematics in-
volving quarks [12]: the momenta of the b-quark and the
spectator antiquark in the B-meson are

pµb � mb v
µ, lµ =

l+
2

nµ+ + lµ⊥ +
l−
2

nµ−, (2.5)

and for the quark and antiquark in the ρ-meson we de-
compose their momentum vectors as follows

kµ1 � uE nµ− + kµ⊥ +O(k2
⊥),

kµ2 � ū E nµ− − kµ⊥ +O(k2
⊥), (2.6)

where vµ is the heavy meson velocity (v2 = 1), nµ− and nµ+
are the light-like vectors (n2

± = 0 and (n−n+) = 2) par-
allel to the four-momenta pµ and qµ of the ρ-meson and
the photon, respectively, in the approximation when the
effects quadratic in the light meson mass are neglected, so
that p2 = m2

ρ � 0. However, we shall keep the ρ-meson
mass in the phase space factor for the decay B → ργ. In
the above formula u and ū = 1 − u are the relative en-
ergies of the quark and antiquark, respectively. In terms
of these vectors the B-meson four-velocity can be decom-
posed as vµ = (nµ−+nµ+)/2. Due to the energy-momentum
conservation in a two-body decay the energy of the ρ-
meson is E � M/2, where M is the B-meson mass, as
well as the energy of the photon ω � M/2 (we assume
that qµ = ωnµ+). The four-vectors lµ⊥ and kµ⊥ describe the
transverse motion of the light quarks in B- and ρ-mesons,
respectively, and are of order ΛQCD. In this approach we
neglect the internal motion of the b-quark in the B-meson,
which is also of order ΛQCD, and consider the b-quark
static in the B-meson rest frame (see (2.5)). It means that
the light antiquark in the heavy meson do not influence
strongly the B-meson kinematics, and its energy is also of
order ΛQCD (l± ∼ ΛQCD), i.e., it is of the same order as
its transverse momentum lµ⊥.

Spectator corrections to the B → ργ decay amplitude
can be calculated in the form of a convolution formula,
whose leading (∼ αs) term can be expressed as [12]:

∆M(HSA) =
4παsCF

Nc

1∫
0

du

∞∫
0

dl+ M
(B)
jk M

(ρ)
li Tijkl, (2.7)

where Nc is the number of colours, CF = (N2
c − 1)/(2Nc)

is the Casimir operator eigenvalue in the fundamental
representation of the colour SU(Nc) group, and Tijkl is
the hard-scattering amplitude which is calculated from
the Feynman diagrams presented in the next section. The
colour trace has been performed, while the Dirac indices
i, j, k, and l are written explicitly. The leading-twist two-
particle light-cone projection operators M

(B)
jk [32,12] and

b

O7




d

�d(�u) �d(�u)

b

O7




d

�d(�u) �d(�u)

Fig. 1. Feynman diagrams contributing to the spectator cor-
rections involving the O7 operator in the decay B → ργ. The
curly (dashed) line here and in subsequent figures represents a
gluon (photon)

M
(ρ)
li [33,12] of B- and ρ-mesons in the momentum repre-

sentation are:

M
(B)
jk = − ifBM

4

[
1 + v/

2

{
φ
(B)
+ (l+)n/+ + φ

(B)
− (l+)

×
(
n/− − l+γµ⊥

∂

∂lµ⊥

)}
γ5

]
jk

∣∣∣∣∣∣
l=(l+/2)n+

, (2.8)

M
(ρ)
li = − i

4

[
f
(ρ)
⊥ ε/∗p/ φ

(ρ)
⊥ (u) + f

(ρ)
‖ p/

m

E
(vε∗)φ(ρ)

‖ (u)
]
li
,

(2.9)

where fB is the B-meson decay constant, f
(ρ)
‖ and f

(ρ)
⊥ are

the longitudinal and transverse ρ-meson decay constants,
respectively, and εµ is the ρ-meson polarization vector.
These projectors include also the leading-twist distribu-
tion amplitudes φ

(B)
+ (l+) and φ

(B)
− (l+) of the B-meson

and φ
(ρ)
‖ (u) and φ

(ρ)
⊥ (u) of the ρ-meson.

3 Hard spectator contributions
in B → V γ decays

We now present the set of the hard-scattering amplitudes
contributing to the spectator corrections to the B → V γ
decays, where V = ρ,K∗. These are calculated in O(αs)
based on the Feynman diagrams which we show and dis-
cuss in this section.
1. Spectator corrections due to the electromagnetic dipole
operator O7. The corresponding diagrams are presented
in Fig. 1. The explicit expression is:

T (1)
ijkl = −i

GF√
2
V ∗
tdVtbC

eff
7 (µ)

emb(µ)
4π2

[γµ]kl
(l − k2)2

×
[
(qσe∗)(1 + γ5)

p/b + l/ − k/2 +mb
(pb + l − k2)2 − m2

b

γµ

+γµ
k/1 + k/2 − l/

(k1 + k2 − l)2
(qσe∗)(1 + γ5)

]
ij

, (3.1)

where we have used a short-hand notation (qσe∗) = σµν

qµe
∗
ν .

2. Spectator corrections due to the chromomagnetic dipole
operator O8. The corresponding diagrams are presented in
Fig. 2. The top two diagrams (Fig. 2a) give the corrections
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O8 O8

a

O8 O8

b

Fig. 2a,b. Feynman diagrams contributing to the spectator
corrections involving the O8 operator in the decays B → V γ.
Row a: photon is emitted from the flavour-changing quark line;
Row b: photon radiation off the spectator quark line

for the case when the photon is emitted from the flavour-
changing quark line and the result is:

T (2a)
ijkl = −i

GF√
2
V ∗
tdVtbC

eff
8 (µ)

emb(µ)
12π2 [γν ]kl

(l − k2)µ
(l − k2)2

×
[
e/∗ p/b + l/ − k/2

(pb + l − k2)2
σµν(1 + γ5)

+σµν(1 + γ5)
k/1 + k/2 − l/+mb
(k1 + k2 − l)2 − m2

b

e/∗
]
ij

, (3.2)

where the value of the b-quark charge Qb = −1/3 is taken
into account. The second row (Fig. 2b) contains the dia-
grams with the photon emission from the spectator quark
which results into the following hard-scattering amplitude:

T (2b)
ijkl = i

GF√
2
V ∗
tdVtbC

eff
8 (µ)

eQd(u)mb(µ)
4π2

× [σµν(1 + γ5)]ij
(pb − k1)µ
(pb − k1)2

(3.3)

×
[
γν

p/b + l/ − k/1

(pb + l − k1)2
e/∗ + e/∗ k/1 + k/2 − p/b

(k1 + k2 − pb)2
γν

]
kl

.

Note that this amplitude depends on the spectator quark
charge Qd(u) and hence is a potential source of isospin
symmetry breaking.
3. Spectator corrections involving the penguin-type dia-
grams and the operator O2. The corresponding diagrams
are presented in Figs. 3, 4, and 5. The hard-scattering am-
plitude corresponding to the two diagrams in Fig. 3a in-
volving the emission of the photon from the b- or d-quarks
is as follows:

T (3a)
ijkl =

GF√
2

e

24π2

∑
f=u,c

V ∗
fdVfb C

(f)
2 (µ)∆F1

(
z
(f)
1

)
[γν ]kl

×
[{

γν − (k2 − l)ν(k/2 − l/)
(k2 − l)2

}
(1− γ5)

O2 O2

a

O2 O2

b

Fig. 3a,b. Feynman diagrams contributing to the spectator
corrections in B → V γ decays involving the O2 operator.
Row a: photon emission from the flavour-changing quark line;
Row b: photon radiation off the spectator quark line

× k/1 + k/2 − l/+mb
(k1 + k2 − l)2 − m2

b

e/∗ + e/∗ p/b + l/ − k/2

(pb + l − k2)2

×
{
γν − (k2 − l)ν(k/2 − l/)

(k2 − l)2

}
(1− γ5)

]
ij

, (3.4)

where the function ∆F1(z(f)) results from performing the
integration over the momentum of the internal quark f
having the mass mf [34]:

∆F1(z) = −2
9

− 4
3

Q0(z)
z

− 2
3
Q0(z), (3.5)

and its argument is z
(f)
1 = (k2 − l)2/m2

f � −Ml+ū/m2
f ,

in the limit of the large recoil and to leading order in
the inverse B-meson mass. In (3.5) the function Q0(z) is
defined as follows:

Q0(z) =

1∫
0

du ln [1− zu(1− u)] , (3.6)

and for the case Im z > 0 it has the form [34]:

Q0(z) = −2− [u+(z)− u−(z)]
(
ln

u−(z)
u+(z)

+ iπ

)
, (3.7)

u±(z) =
1
2

(
1±

√
1− 4

z

)
.

The argument z(f)
1 of the function ∆F1(z

(f)
1 ) in (3.4) can

be large (z(u)
1 ∼ MΛQCD/m2

u for the u-quark), and the
asymptotic form of this function at large values of its ar-
gument is of interest:
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O2 O2

Fig. 4. Feynman diagrams contributing to the spectator cor-
rections in B → V γ decays involving the O2 operator for the
case when both the photon and the virtual gluon are emitted
from the internal (loop) quark line

∆F1(z)
∣∣∣∣
z→∞

� 2
3

[(
1− 6

z2

) [
ln
1
z
+ iπ

]

+
5
3
+
6
z
+
3
z2

]
. (3.8)

Thus, in the case of the internal u-quark loop, the func-
tion∆F1(z) is enhanced by the large logarithm ln(mu/M).
However, as it has been shown in [35], summing up to all
orders in αs, the penguin-like diagrams relevant for the
b → dγ process can be safely calculated by taking the
massless limit for the u-quark in the penguin loop. This
implies that, despite the superficial appearance, no large
enhancement in the amplitude due to ln(mu/M) is en-
countered.

Diagrams in Fig. 3b describing the emission of the pho-
ton from the spectator quark line yield:

T (3b)
ijkl = −GF√

2

eQd(u)

8π2

∑
f=u,c

V ∗
fdVfb C

(f)
2 (µ)∆F1

(
z
(f)
0

)

×
[
e/∗ k/1 + k/2 − p/b
(k1 + k2 − pb)2

γν + γν
p/b + l/ − k/1

(pb + l − k1)2
e/∗
]
kl

×
[{

γν − (pb − k1)ν
(pb − k1)2

(p/b − k/1)
}
(1− γ5)

]
ij

, (3.9)

where the argument of the function ∆F1(z
(f)
0 ) is z

(f)
0 =

(pb − k1)2/m2
f � M2ū/m2

f in the large recoil limit.
There exists another topological class of diagrams con-

tributing to the spectator corrections involving the effec-
tive bdg∗γ vertex presented in Fig. 4. The expression for
the one-particle irreducible (OPI) bdg∗γ∗ vertex as well as
the general bdg∗γ∗ case are known since a long time [34].
For an on-shell photon q2 = 0, the OPI vertex is simplified
and can be found in [6] and [7] for the four-dimensional
and arbitrary d-dimensional momentum spaces, respec-
tively. For the case considered here, the four-dimensional
result derived in [6] is used.

The hard scattering amplitude corresponding to the
diagrams shown in Fig. 4 is:

T (4)
ijkl = −GF√

2
e

6π2

[γν ]kl
(k2 − l)2 (q[k2 − l])

×
∑
f=u,c

V ∗
fdVfb C

(f)
2 (µ)

[{[
qν E(k2 − l, e∗, q)

−(q[k2 − l]) E(ν, e∗, q) + (e∗[k2 − l]) E(q, ν, k2 − l)

−(q[k2 − l]) E(e∗, ν, k2 − l)
]
∆i5

(
z
(f)
0 , z

(f)
1 , 0

)
+
[
(k2 − l)2 E(ν, e∗, q) + (k2 − l)ν E(e∗, k2 − l, q)

]
×∆i25

(
z
(f)
0 , z

(f)
1 , 0

)}
(1− γ5)

]
ij

, (3.10)

where the value Qu = 2/3 of the electric charge of the
quark in the loop is taken into account, and we have used a
short-hand notation for the following expression involving
products of γ-matrices:

E(µ, ν, ρ) ≡ 1
2
(γµγνγρ−γργνγµ) = −iεµνρσ γ

σ γ5. (3.11)

The equality shown above is valid in the four-dimensional
space only. In (3.10) the functions ∆i5(z0, z1, 0) and ∆i25
(z0, z1, 0) are [6]:

∆i5(z0, z1, 0) = −1 + z1
z0 − z1

[Q0(z0)− Q0(z1)]

− 2
z0 − z1

[Q−(z0)− Q−(z1)] , (3.12)

∆i25(z0, z1, 0) = Q0(z0)− Q0(z1). (3.13)

The auxiliary function Q0(z) is defined in (3.6), and the
other auxiliary function Q−(z) is:

Q−(z) =

1∫
0

du

u
ln [1− zu(1− u)] , (3.14)

with the explicit form for the case Im z > 0 [34]:

Q−(z) =
1
2

(
ln

u−(z)
u+(z)

+ iπ

)2

, (3.15)

where the definition of u±(z) can be found in (3.7).
The arguments z

(f)
0 = (pb − k1)2/m2

f � M2ū/m2
f

and z
(f)
1 = (k2 − l)2/m2

f � −Ml+ū/m2
f , already speci-

fied above, depend on the internal quark mass mf , and
in the case of the u-quark, they are large practically in
all the region of the variables u and l+. This is not the
case for the c-quark contribution in the internal loop, and
the charm quark mass-dependent corrections can be im-
portant [15,16]. Note that the value of z(f)

1 is suppressed
by the factor ΛQCD/M in comparison with z

(f)
0 and in the

framework of the large recoil limit the corrections of or-
der z

(f)
1 /z

(f)
0 can be neglected. In this case, the functions

(3.13) and (3.12) are reduced, respectively, to ∆i25(z0, 0,
0) = Q0(z0) and

∆i5(z0, 0, 0) = −1− 2
z0

Q−(z0) (3.16)

=

{
−1 + (4/z0) arctan2

[
1/
√
(4/z0)− 1

]
, z0 < 4,

−1− (ln [u−(z0)/u+(z0)] + iπ)2 /z0, z0 > 4.

Using the properties of the dilogarithmic function Li2(z),
the functions t⊥(u,mq) in the limit q2 → 0 ((33) derived
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O2 O2

Fig. 5. Feynman diagrams contributing to the spectator cor-
rections in B → V γ decays involving the O2 operator for the
case when only the photon is emitted from the internal (loop)
quark line in the bs(d)γ vertex

in [15]) and h(u, s) ((35) in [16]) are the same as the func-
tion ∆i5(z0, 0, 0), derived here, up to overall factors given
below:

h(ū, s) = − 1
2
t⊥(u,mq)

∣∣∣∣
q2→0

=
2
ū
∆i5(z0, 0, 0).

Finally, there are also diagrams where a photon is emitted
from the internal quark line due to the effective b → s(d)γ
interaction and a gluon is exchanged between the specta-
tor quark and the b- or s(d)-quarks (see Fig. 5). Note that
in the momentum space the amputated b → s(d)γ vertex
due to the four-fermion quark interaction (the O2 vertex)
has the form [34,7]:

I(f)
µ = − e

6π2 ∆F1

(
q2

m2
f

) [
qµq/ − q2γµ

]
(1− γ5) , (3.17)

where the function ∆F1(z) is defined in (3.5). For the real
photon case (q2 = 0), the amplitude contains the scalar
product (e∗I(f)) ∼ (e∗q)q/−q2e/∗ which is zero. This vertex
gives a non-vanishing contribution for off-shell photons,
such as b → s(d)γ∗ → s(d)l+l−, which, however, is not
the process we are considering in this paper. Hence, for
on-shell photon, the Feynman diagrams in Fig. 5 do not
contribute to B → K∗(ρ)γ (or b → s(d)γ).

4 O(αs)-corrected matrix elements
for B → V γ decays

The convolution of the B- and vector (ρ- or K∗-) meson
projection operators displayed in (2.8) and (2.9), respec-
tively, with the hard-scattering matrix elements derived
in the previous section can be written as:

∆M(V )
sp =

GF√
2

eαsCF
4πNc

fBf
(V )
⊥ M

[
(e∗ε∗)

+i eps(e∗, ε∗, n−, v)
] 5∑
k=1

∆H
(V )
k , (4.1)

where eps(a, b, c, d) = εµνρσa
µbνcρdσ and the upper in-

dex V (= K∗ or ρ) characterizes the final vector meson.
The dimensionless functions ∆H

(V )
k (k = 1, 2, 3, 4, 5) de-

scribe the contributions of the sets of Feynman diagrams

presented in Figs. 1-5, respectively. In the leading order of
the inverse B-meson mass (∼ ΛQCD/M), the result reads
as follows:

∆H
(V )
1 (µ) � V ∗

tpVtb C
eff
7 (µ)mb(µ)

[〈
l−1
+
〉
+

〈
ū−1〉(V )

⊥ (µ)

+
〈
l−1
+
〉

−
〈
ū−2〉(V )

⊥ (µ)
]
, (4.2)

∆H
(V )
2 (µ) � 1

3
V ∗
tpVtb C

eff
8 (µ)mb(µ)

× 〈
l−1
+
〉
+

〈
u−1〉(V )

⊥ (µ), (4.3)

∆H
(V )
3 (µ) � 0, (4.4)

∆H
(V )
4 (µ) � 1

3
C2(µ)M

〈
l−1
+
〉
+

[
V ∗
tpVtb

〈
ū−1〉(V )

⊥ (µ)

+V ∗
cpVcb h

(V )(z, µ)
]
, (4.5)

∆H
(V )
5 (µ) � 0, (4.6)

where z = m2
c/m

2
b and index p in the CKM matrix el-

ements is p = s for the K∗-meson and p = d for the
ρ-meson. In the above results we have used the short-
hand notation for the integrals over the mesons distribu-
tion functions:

〈
lN+
〉

± ≡
∞∫
0

dl+ lN+ φ
(B)
± (l+),

〈f〉(V )
⊥,‖ (µ) ≡

1∫
0

du f(u)φ(V )
⊥,‖(u, µ), (4.7)

and for convenience the following function was introduced:

h(V )(z, µ) =

〈
∆i5(z

(c)
0 , 0, 0) + 1

ū

〉(V )

⊥
. (4.8)

The function ∆H
(V )
2 (µ) (4.3) contains the distribution

moment
〈
u−1

〉(V )
⊥ , which in the case of the ρ-meson can

be replaced by
〈
u−1

〉(ρ)
⊥ → 〈

ū−1
〉(ρ)

⊥ , as the ρ-meson dis-

tribution function φ
(ρ)
⊥ (u) is symmetric under the inter-

change u → ū = 1− u [32]. This replacement is not valid
for the case of the K∗-meson where a sizable asymme-
try under the interchange u → ū is present in the wave-
function [32]. The function ∆H

(V )
4 (µ) (4.5) arises from

the diagrams shown in Fig. 4 with the internal u- and
c-quarks. The contributions of the internal quarks dif-
fer by the CKM factor V ∗

fpVfb (f = u, c) and the quark
masses (mc and mu). If the internal quark masses are
neglected, an assumption made in the earlier version of
this paper but one which we no longer invoke here, then
C

(u)
2 = C

(c)
2 = C2. This follows as ∆H

(V )
4 (µ) originates in

the terms ∼ ∆i5 from the hard-scattering amplitude T (4)
ijkl,

and the replacement ∆i5 → −1 holds in the chiral inter-
nal quark limit, mf = 0. By making use of the unitarity
relation V ∗

ubVup + V ∗
cbVcp + V ∗

tbVtp = 0 their sum can be
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Table 1. Representative values of theK∗- and ρ-meson parameters in the decays
B → V γ (V = ρ,K∗) at the scales µ = µsp = 1.52 GeV for the hard spectator
corrections and µ = mb,pole = 4.65 GeV for the vertex corrections. The central
values of the parameters shown in Tables 4 and 6 are used as inputs with

√
z =

mc/mb = 0.29

K∗-meson ρ-meson
µsp mb,pole µsp mb,pole

µ, [GeV] 1.52 4.65 1.52 4.65
a
(V )
⊥1 (µ) 0.187 0.164 0 0

a
(V )
⊥2 (µ) 0.036 0.029 0.179 0.143

h0(z) 3.91 + i 1.64 3.91 + i 1.64 3.91 + i 1.64 3.91 + i 1.64
h(V )(z, µ) 4.72 + i 1.46 4.62 + i 1.49 4.01 + i 1.45 3.99 + i 1.48
〈
ū−1〉(V )

⊥ (µ) 3.67 3.58 3.54 3.43

h(V )/
〈
ū−1〉(V )

⊥ 1.29 + i 0.40 1.29 + i 0.42 1.13 + i 0.41 1.16 + i 0.43
f

(V )
⊥ (µ), [MeV] 179 167 155 145

∆F
(V )
⊥ (µ) 1.96 1.79 1.64 1.48

expressed in terms of one independent CKM combination
V ∗
tpVtb (the first term in the bracket of (4.5)). The cor-
rection due to the non-zero c-quark mass, which comes
weighted by its own CKM factor V ∗

cpVcb, is contained in
the second term of (4.5). A detailed discussion of the im-
portance of these corrections will be discussed below. (See,
also [36].)

The result obtained above deserves a number of com-
ments. First, note that the diagrams shown in Fig. 3 in-
volving the operator O2 do not contribute in the large
recoil limit and to leading order in the inverse B-meson
mass. Second, there are no contributions from the dia-
grams involving the chromomagnetic operator O8 for the
case where a photon is emitted from the spectator line
(Figs. 2b). It means that no new contributions to the
isospin-breaking corrections to the decay rates B → V γ
arise from the hard-spectator corrections in the large recoil
limit. Third, the contribution from the diagrams shown
in Fig. 1 contains an end-point singularity of the form〈
ū−2

〉(V )
⊥ whereas the diagrams in Figs. 2 and 4 give fi-

nite contributions. As argued by Beneke and Feldmann
in [12], this end-point singularity describes the soft-gluon
physics of the matrix element and can be absorbed into
the “soft form factor” ξ

(V )
⊥ . This removes the singularity

but introduces a factorization scheme (or renormalization
convention) for the “soft form factor”. After adopting this
procedure, the hard-spectator corrections to the B → V γ
decay amplitude depends on the product of the moment
of the B-meson distribution

〈
l−1
+
〉
+ with the vector me-

son transverse distribution averages:
〈
ū−1

〉(V )
⊥ ,

〈
u−1

〉(V )
⊥ ,

and h(V ) = 〈(∆i5 + 1)/ū〉(V )
⊥ . These products are intrin-

sically non-perturbative though universal quantities and
will have to be determined either by data from elsewhere
or else resorting to models for the B-meson and the vector
meson distribution functions.

It is convenient to introduce the dimensionless quan-
tity [12]

∆F
(V )
⊥ (µ) =

8π2fBf
(V )
⊥ (µ)

NcMλB,+

〈
ū−1〉(V )

⊥ (µ), (4.9)

where λ−1
B,+ =

〈
l−1
+
〉
+ is the first negative moment of

the B-meson distribution function φ
(B)
+ (l+) which is typ-

ically estimated as λ−1
B,+ = (3 ± 1) GeV [33,12]. At the

scale µsp =
√
µbΛH of the hard-spectator corrections,

and for the central values of the parameters shown in
Table 1 with λ−1

B,+ = 3 GeV, this quantity is evaluated

as ∆F
(K∗)
⊥ (µsp = 1.52 GeV) = 1.96 and ∆F

(ρ)
⊥ (µsp =

1.52 GeV) = 1.64 for the K∗- and ρ-meson, respectively.
In term of ∆F

(V )
⊥ (µ) the hard-spectator part of B → V γ

decay amplitude has the form:

∆Msp =
GF√
2
V ∗
tpVtb

αsCF
4π

e

4π2 ∆F
(V )
⊥ (µ)

× [(pP ) (e∗ε∗) + i eps(e∗, ε∗, p, P )]

×
[
Ceff

7 (µ) +
1
3
Ceff

8 (µ) +
1
3
C2(µ)

×
(
1 +

V ∗
cpVcb

V ∗
tpVtb

h(V )(z, µ)

〈ū−1〉(V )
⊥ (µ)

)]
, (4.10)

where P = Mv and p = En− � Mn−/2 are the four-
momenta of the B- and vector meson, respectively, and,
as in (4.2)–(4.6), index p = s or d for the case of K∗ or
ρ-meson.

We now proceed to give an analytic result for the func-
tion h(V )(z, µ). To that end we recall that the leading-
twist transverse distribution amplitude φ(V )

⊥ (u, µ) of a vec-
tor meson is the solution of an evolution equation and has
the following general form [32]:

φ
(V )
⊥ (u, µ) = 6uū

[
1 +

∞∑
n=1

a
(V )
⊥n (µ)C

3/2
n (u − ū)

]
, (4.11)
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where C
3/2
n (u − ū) are the Gegenbauer polynomials [C3/2

1

(u − ū) = 3(u − ū), C3/2
2 (u − ū) = 3

[
5(u − ū)2 − 1

]
/2,

etc.] and a
(V )
⊥n (µ) are the corresponding Gegenbauer mo-

ments (the ρ-meson distribution amplitude includes the
even moments only). These moments should be evaluated
at the scale µ; their scale dependence is governed by [32]:

a
(V )
⊥n (µ) =

(
αs(µ2)
αs(µ2

0)

)γn/β0

a
(V )
⊥n (µ0),

γn = 4CF

(
n∑
k=1

1
k

− n

n+ 1

)
, (4.12)

where β0 = (11Nc−2nf )/3 and γn is the one-loop anoma-
lous dimension with CF = (N2

c − 1)/(2Nc) = 4/3. In the
limit µ → ∞ the Gegenbauer moments vanish, a(V )

⊥n (µ) →
0, and the leading-twist transverse distribution amplitude
has its asymptotic form:

φ
(V )
⊥ (u, µ) → φ

(as)
⊥ (u) = 6uū. (4.13)

A simple model of the transverse distribution which in-
cludes contributions from the first a

(V )
⊥1 (µ) and the sec-

ond a
(V )
⊥2 (µ) Gegenbauer moments only is used here in

the analysis. In this approach the quantities
〈
u−1

〉(V )
⊥ and〈

ū−1
〉(V )

⊥ are:

〈
u−1〉(V )

⊥ = 3
[
1− a

(V )
⊥1 (µ) + a

(V )
⊥2 (µ)

]
,〈

ū−1〉(V )
⊥ = 3

[
1 + a

(V )
⊥1 (µ) + a

(V )
⊥2 (µ)

]
, (4.14)

and depend on the scale µ due to the coefficients a(V )
⊥n (µ).

The Gegenbauer moments were evaluated at the scale
µ0 = 1 GeV, yielding [32]: a(K∗)

⊥1 (1 GeV) = 0.20 ± 0.05
and a

(K∗)
⊥2 (1 GeV) = 0.04 ± 0.04 for the K∗-meson and

a
(ρ)
⊥1(1 GeV) = 0 and a

(ρ)
⊥2(1 GeV) = 0.20 ± 0.10 for the

ρ-meson. In the same manner, the function h(V )(z, µ) in-
troduced in (4.8) can be presented as an expansion on the
Gegenbauer moments:

h(V )(z, µ) = h0(z) + a
(V )
⊥1 (µ)h1(z) + a

(V )
⊥2 (µ)h2(z) (4.15)

=
[
1 + 3a(V )

⊥1 (µ) + 6a
(V )
⊥2 (µ)

]
〈(∆i5 + 1)/ū〉(0)⊥

−6
[
a
(V )
⊥1 (µ) + 5a

(V )
⊥2 (µ)

]
〈∆i5 + 1〉(0)⊥

+30 a(V )
⊥2 (µ) 〈ū (∆i5 + 1)〉(0)⊥ ,

where another short-hand notation is introduced for the
integral:

〈f(u)〉(0)⊥ =

1∫
0

du f(u)φ(as)
⊥ (u). (4.16)

Such a decomposition allows us to define the set of func-
tion hn(z) which are dependent on the charm-to-bottom
quark mass ratio z = m2

c/m
2
b but are independent of the
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f=m
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Imh0(z)

Reh0(z)

Fig. 6. The function h0(z) plotted against the ratio m2
f/m

2
b

where mb is the b-quark mass. The solid curve is the real part
of the function and the dashed curve is its imaginary part

parameters of the vector meson in consideration. The an-
alytical expressions for the integrals in (4.15) are:

〈
∆i5(ū/z, 0, 0) + 1

ū

〉(0)
⊥

= −2z {6− ln3 z + 6Q0(1/z)

+
3iπ ln z√
1− 4z

[2 +Q0(1/z)]− 6 (1− 2z)Q−(1/z)

−6 [2 lnu+(1/z)− iπ] Li2(u+(1/z))
−6 [2 lnu−(1/z) + iπ] Li2(u−(1/z))
+ 12 [Li3(u+(1/z)) + Li3(u−(1/z))]} , (4.17)

〈∆i5(ū/z, 0, 0) + 1〉(0)⊥

=
3z
2
(5− 12z) + 9z (1− 2z)Q0(1/z)

−6z (1− 4z + 6z2)Q−(1/z), (4.18)

〈ū [∆i5(ū/z, 0, 0) + 1]〉(0)⊥
=

z

18
(
41 + 144z − 720z2)

+
z

3
(
5 + 34z − 120z2)Q0(1/z)

−2z (1− 18z2 + 40z3)Q−(1/z), (4.19)

where Q0(1/z) and Q−(1/z) are the functions defined in
(3.6) and (3.14), respectively, and the dilogarithmic Li2(z)
and trilogarithmic Li3(z) functions have their usual defi-
nitions:

Li2(z) = −
z∫

0

ln(1− t)
t

dt, Li3(z) =

z∫
0

Li2(t)
t

dt.

The result for the charm-quark mass dependent contri-
bution to ∆H

(V )
4 in (4.5), 〈(∆i5(z

(c)
0 ) + 1)/ū〉(V )

⊥ , derived
above in the LEET framework is finite. We concur on this
point with the observations made in [15,16]. Moreover, we
have presented the resulting contribution in an analytic
form.



98 A. Ali, A.Ya. Parkhomenko: Branching ratios for B → K∗γ and B → ργ decays

0.00 0.05 0.10 0.15 0.20 0.25
-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

z = m2

f=m
2

b

Imh1(z)

Re h1(z)

0.00 0.05 0.10 0.15 0.20 0.25
-2.0

-1.0

0.0

1.0

2.0

3.0

4.0

5.0

z = m2

f=m
2

b

Imh2(z)

Reh2(z)

Fig. 7. The functions h1(z) (left
figure) and h2(z) (right figure)
plotted against the ratio m2

f/m
2
b

where mb is the b-quark mass. The
solid curves are the real parts of the
functions and the dashed curves are
their imaginary parts
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for B → ργ (left figure) and
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figure) plotted against the ra-
tio m2

f/m
2
b at the mass scale of

hard-spectator corrections µsp =
1.52 GeV. The solid curves are the
real parts of the functions and the
dashed curves are their imaginary
parts

The real and imaginary parts of the functions hn(z)
are presented in Figs. 6 (for n = 0) and 7 (for n = 1
and n = 2). The dependence on z = m2

c/m
2
b of the func-

tion h(V )(z, µ) (4.8) at the mass scale µ = µsp = 1.52 GeV
of hard-spectator corrections is presented in Fig. 8 for the
ρ- and K∗-meson. The values of the corresponding Gegen-
bauer moments used for evaluations are given in Table 1.
Comparison of the numerical values for the functions h0(z)
and h(V )(z, µsp) given in this table shows that the influ-
ence of the Gegenbauer moments is more sizable in the
case of the K∗-meson, with the real part increasing by
∼ 15% and the imaginary part decreasing by ∼ 7%. In the
case of the ρ-meson, the imaginary part decreases approxi-
mately by a similar amount but the real part is practically
insensitive to the inclusion of non-leading Gegenbauer mo-
ments.

The amplitude (4.1) is proportional to the tensor decay
constant f (V )

⊥ of the vector meson which is a scale depen-
dent parameter. As for the Gegenbauer moments a

(V )
⊥n ,

its values were defined at the mass scale µ0 = 1 GeV
for the K∗- and ρ-meson following [32]: f (K∗)

⊥ (1 GeV) =
(185±10) MeV and f

(ρ)
⊥ (1 GeV) = (160±10) MeV. Their

values at an arbitrary scale µ can be obtained with the
help of the evolution equation [32]:

f
(V )
⊥ (µ) =

(
αs(µ2)
αs(µ2

0)

)4/(3β0)

f
(V )
⊥ (µ0). (4.20)

Central values of the tensor decay constants at the scales
µsp = 1.52 GeV and mb,pole = 4.65 GeV are presented in
Table 1.

The amplitude (4.10) allows us to get the hard-
spectator corrections to the form factors for the B → V
transitions, with V = ρ or K∗. The relevant form factors
are defined as follows:〈

V (p, ε∗)|Q̄ σµνqνb|B̄(P )
〉

= 2T (V )
1 (q2) eps(µ, ε∗, p, P ), (4.21)
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〈
V (p, ε∗)|Q̄ σµνγ5qνb|B̄(P )

〉
= −iT

(V )
2 (q2) [(M2 − m2

V ) ε
∗µ − (ε∗q) (p+ P )µ]

−iT
(V )
3 (q2) (ε∗q)

[
qµ − q2

M2 − m2
V

(p+ P )µ
]
, (4.22)

where Q = d (for the ρ-meson) and Q = s (for the K∗-
meson) are the down quark and strange quark fields. Note
that only two form factors T

(V )
1 (q2) and T

(V )
2 (q2) con-

tribute to the matrix element of the B → V γ decay.
Hence, the hard spectator corrections for these form fac-
tors from the amplitude (4.10) for on-shell photon (q2 = 0)
are:

∆spT
(ρ)
1 (0) = ∆spT

(ρ)
2 (0) � αsCF

4π
∆F

(ρ)
⊥ (µ)
2

×
[
1 +

C
(0)eff
8 (µ)

3C(0)eff
7 (µ)

+
C

(0)
2 (µ)

3C(0)eff
7 (µ)

×
(
1 +

V ∗
cdVcb

V ∗
tdVtb

h(ρ)(z, µ)

〈ū−1〉(ρ)⊥ (µ)

)]
, (4.23)

for the ρ-meson, and

∆spT
(K∗)
1 (0) = ∆spT

(K∗)
2 (0) � αsCF

4π
∆F

(K∗)
⊥ (µ)
2

×

1 + C

(0)eff
8 (µ)

3C(0)eff
7 (µ)

〈
u−1

〉(K∗)
⊥ (µ)

〈ū−1〉(K∗)
⊥ (µ)

+
C

(0)
2 (µ)

3C(0)eff
7 (µ)

(
1− h(K∗)(z, µ)

〈ū−1〉(K∗)
⊥ (µ)

)]
,

(4.24)

for the K∗-meson, in which the asymmetric distribution
of the K∗-meson wave-function is taken into account. In
writing the last equation we have used the CKM-unitarity
relation V ∗

csVcb/V
∗
tsVtb � −1. We remark that the contri-

bution obtained for the diagrams in Fig. 1 is the same as
the one presented in [12].

5 Branching ratios for the decays B → K∗γ
and B → ργ

We shall proceed by first calculating the branching ra-
tios for the decays B → K∗γ in the LEET approach. In
doing this, we will ignore the isospin-breaking differences
between the decay widths B± → K∗±γ and B0(B̄0) →
K∗0(K̄∗0)γ, as they are power suppressed. A recent calcu-
lation shows that such isospin-breaking terms can lead to
a difference at (4− 8)% level in the amplitudes [37]. Since
present data is not precise enough to quantify isospin-
violations in the decays B → K∗γ, and the effect is any
case small, we average the data over the charged and neu-
tral decay modes to get a statistically more significant re-
sult for the form factor ξ(K

∗)(0) (equivalently T
(K∗)
1 (0)).

As we shall see, the exclusive branching ratios have signif-
icant parametric uncertainties, which translate into com-
mensurate theoretical dispersion on the form factors. To
reduce some of these uncertainties, we shall also calcu-
late the ratio of the exclusive to inclusive decay widths
R(K∗γ/Xsγ) ≡ Γ (B → K∗γ)/Γ (B → Xsγ), and extract
the form factor from the experimentally measured value
for R(K∗γ/Xsγ).

The branching ratios for the decays B± → ρ±γ and
B0(B̄0) → ρ0γ can be related to those of the exper-
imentally measured B-decay modes B+ → K∗+γ and
B0 → K∗0γ, using SU(3)-symmetry breaking effects and
taking into account other differences in the decay ampli-
tudes of which the differing CKM structure is the most
important. An important difference in the B → ρ and
B → K∗ transitions is that the annihilation contribution
is important in the former, leading to significant isospin vi-
olations in the decay rates for B± → ρ±γ and B0 → ρ0γ.
We shall take these isospin violations in B → ργ decays
into account. The branching ratios for the B → ργ decay
modes will be obtained from the expressions

B(B± → ρ±γ) =
Γth(B± → ρ±γ)
Γth(B → K∗γ)

×Bexp(B± → K∗±γ), (5.1)

B(B0(B̄0) → ρ0γ) =
Γth(B0(B̄0) → ρ0γ)

Γth(B → K∗γ)
(5.2)

×Bexp(B0(B̄0) → K∗0(K̄∗0)γ).

As we shall see, the theoretical ratios of the branching
ratios on the r.h.s. of these equations can be obtained
with smaller parametric uncertainties.

5.1 B → K∗γ decays

The present measurements of the branching ratios forB →
K∗γ decays from the CLEO, BABAR, and BELLE col-
laborations are summarized in Table 2. They yield the
following world averages:

Bexp(B± → K∗±γ) = (3.82± 0.47)× 10−5, (5.3)

Bexp(B0(B̄0) → K∗0(K̄∗0)γ) = (4.44± 0.35)× 10−5.

Since we are ignoring the isospin differences in the de-
cay widths of B → K∗γ decays, the branching ratios for
B± → K∗±γ and B0(B̄0) → K∗0(K̄∗0)γ differ essentially
by the differing lifetimes of the B± and B0 mesons. Thus,
generically, the branching ratio can be expressed as:

Bth(B → K∗γ) = τB Γth(B → K∗γ) (5.4)

= τB
G2
Fα|VtbV ∗

ts|2
32π4 m2

b,pole M
3
[
ξ
(K∗)
⊥

]2
×
(
1− m2

K∗

M2

)3 ∣∣∣C(0)eff
7 +A(1)(µ)

∣∣∣2 ,
where GF is the Fermi coupling constant, α = α(0) =
1/137 is the fine-structure constant, mb,pole is the pole
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Table 2. Experimental branching ratios for the decays B0(B̄0) → K∗0(K̄∗0)γ
and B± → K∗±γ

Experiment Bexp(B0(B̄0) → K∗0(K̄∗0) + γ) Bexp(B± → K∗± + γ)

CLEO [19] (4.55+0.72
−0.68 ± 0.34) × 10−5 (3.76+0.89

−0.83 ± 0.28) × 10−5

BELLE [20] (4.96 ± 0.67 ± 0.45) × 10−5 (3.89 ± 0.93 ± 0.41) × 10−5

BABAR [21] (4.23 ± 0.40 ± 0.22) × 10−5 (3.83 ± 0.62 ± 0.22) × 10−5

b-quark mass, M and mK∗ are the B- and K∗-meson
masses, and τB is the lifetime of the B0- or B+-meson
which have the following world averages (in picoseconds)
[38]:

τB0 = (1.546± 0.018) ps, τB+ = (1.647± 0.016) ps.
(5.5)

The product of the CKM-matrix |VtbV ∗
ts| can be estimated

from the unitarity fit of the quantity [39]:∣∣∣∣VtbV ∗
ts

Vcb

∣∣∣∣ = 0.976± 0.010 , (5.6)

and the present measurements of the CKMmatrix element
|Vcb| = 0.0406± 0.0019 [39]. This yields

|VtbV ∗
ts| = 0.0396± 0.0020 . (5.7)

The quantity ξ
(K∗)
⊥ is the value of the T

(K∗)
1 (q2) form fac-

tor in B → K∗ transition in (4.21) and evaluated at q2 = 0
in the HQET limit. For this study, we consider ξ(K

∗)
⊥ as a

free parameter and we will extract its value from the cur-
rent experimental data on B → K∗γ decays. Note that
the quantity ξ

(K∗)
⊥ used here is normalized at the scale

µ = mb,pole of the pole b-quark mass. The corresponding
quantity in [12] is defined at the scale µ = mb,PS involving
the potential-subtracted (PS) b-quark mass [40,41].

The function A(1) in (5.4) can be decomposed into the
following three components:

A(1)(µ) = A
(1)
C7
(µ) +A(1)

ver(µ) +A(1)K∗
sp (µsp) . (5.8)

Here, A(1)
C7
and A

(1)
ver are the O(αs) (i.e. NLO) corrrections

due to the Wilson coefficient Ceff
7 and in the b → sγ ver-

tex, respectively, and A
(1)K∗
sp is the O(αs) hard-spectator

corrections to the B → K∗γ amplitude computed in this
paper. Their explicit expressions are as follows:

A
(1)
C7
(µ) =

αs(µ)
4π

C
(1)eff
7 (µ), (5.9)

A(1)
ver(µ) =

αs(µ)
4π

{
32
81

[
13C(0)

2 (µ) + 27C(0)eff
7 (µ)

−9C(0)eff
8 (µ)

]
ln

mb
µ

− 20
3

C
(0)eff
7 (µ)

+
4
27
(
33− 2π2 + 6πi

)
C

(0)eff
8 (µ)

+r2(z)C
(0)
2 (µ)

}
, (5.10)

A(1)K∗
sp (µsp) =

αs(µsp)
4π

∆F
(K∗)
⊥ (µsp)

6ξ(K
∗)

⊥

{
3C(0)eff

7 (µsp)

+C
(0)eff
8 (µsp)

[
1− 6a(K∗)

⊥1 (µsp)

〈ū−1〉(K∗)
⊥ (µsp)

]

+C
(0)
2 (µsp)

[
1− h(K∗)(z, µsp)

〈ū−1〉(K∗)
⊥ (µsp)

]}
.

(5.11)

Note, the O(αs) corrections arising from the relation be-
tween the MS mass m̄b(µ) and the pole massmb,pole in the
operatorO7 are included in the vertex corrections. As indi-
cated above, the first two contributions in A(1)(µ) should
be estimated at the scale of the b-quark mass µ ∼ O(mb),
while the hard-spectator correction should be evaluated
at the characteristic scale µsp =

√
µΛH of the gluon vir-

tuality, where ΛH � 0.5 GeV is a typical hadronic scale
of order ΛQCD. The functions r2(z), where z = m2

c/m
2
b ,

and the Wilson coefficients in the above equations can be
found in [7,4]. We recall that the function h(K∗)(z) from
the hard spectator corrections is complex in the region 0 <
z < 1/4, likewise the function r2(z) from the vertex cor-
rections. The non-asymptotic corrections in theK∗-meson
wave-function 6a(K∗)

⊥1 /
〈
ū−1

〉(K∗)
⊥ reduce the coefficient of

the anomalous chromomagnetic moment C
(0)eff
8 (µsp) by

about 20%.
We now estimate numerically the importance of the

O(αs) contributions in the B → K∗γ decay amplitude. It
is convenient to decompose the vertex correction A

(1)
ver(µ)

and the hard-spectator correction A
(1)K∗
sp (µ) into the fac-

torizable A
(1)
ver,f(µ) and A

(1)K∗

sp,f (µ) and non-factorizable

A
(1)
ver,nf(µ) and A

(1)K∗

sp,nf (µ) parts. So as not to cause any
confusion, our definition is that the first two depend on
the effective Wilson coefficient C

(0)eff
7 , and the last two

involve the rest of the Wilson coefficients. For the central
values of the parameters shown in Table 4, and the in-
dicated values of the the quantities mc/mb and µ, the
Wilson coefficient C

(0)eff
7 in the leading order and the

O(αs) corrections from (5.9)–(5.11) assume the values pre-
sented in Table 3. What concerns the spectator contribu-
tions A

(1)K∗

sp,f (µsp) and A
(1)K∗

sp,nf (µsp), the quoted numbers
in this table make use of the QCD sum-rules motivated
value for the nonperturbative quantity ξ

(K∗)
⊥ (0) = 0.35

[15]. The values for the amplitude presented in the second
and third columns are obtained for the same pole quark
mass ratio

√
z = mc/mb = 0.29, but with m̄b = 4.27
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Table 3. Input parameters and individual contributions in the NLO amplitude for the decay B →
K∗γ entering in (5.4) and (5.8). The entries in the second and third columns refer to the choice of the
b-quark mass schemes MS and the pole mass, respectively. The last two columns correspond to the
so-called PS-scheme b-quark mass used by Beneke et al. [15], with mc/mb = 0.29 and mc/mb = 0.22.
Note that the total decay amplitude squared, which is numerically presented in the last row, is
truncated to the NLO accuracy

mc/mb 0.29 0.29 0.29 0.22

µ m̄b = 4.27 GeV mb,pole = 4.65 GeV mb,PS = 4.6 GeV mb,PS = 4.6 GeV

C
(0)eff
7 (µ) −0.320 −0.315 −0.318 −0.318

A
(1)
C7
(µ) + 0.010 + 0.009 + 0.010 + 0.010

A
(1)
ver,f(µ) + 0.032 + 0.036 + 0.024 + 0.024

A
(1)
ver,nf(µ) −0.076 − i 0.016 −0.083 − i 0.016 −0.085 − i 0.016 −0.103 − i 0.025

A
(1)K∗
sp,f (µsp) −0.028 −0.027 −0.026 −0.026

A
(1)K∗
sp,nf (µsp) −0.011 − i 0.012 −0.011 − i 0.011 −0.009 − i 0.011 −0.004 − i 0.018

A(1)(µ) −0.073 − i 0.028 −0.077 − i 0.027 −0.086 − i 0.027 −0.099 − i 0.043

C
(0)eff
7 +A(1)(µ) −0.393 − i 0.028 −0.392 − i 0.027 −0.403 − i 0.027 −0.416 − i 0.043

|C(0)eff
7 +A(1)(µ)|2 0.149 0.147 0.155 0.164

GeV and mb,pole = 4.65 GeV, and calculating the strong
coupling αs(µ) in the two-loop approximation. The last
two columns of this table are calculated for comparison
with the numerical results by Beneke et al. [15]. They
are presented for the two values of the quark mass ra-
tio, mc/mb = 0.29 (the ratio of the pole masses) and
mc/mb = 0.22 (the ratio of the MS c-quark mass to the
pole b-quark mass [18]), but with mb,PS = 4.6 GeV. Note
that for the entries in the last two columns the three-
loop strong coupling constant αs was used as well as the
effect of the non-leading Wilson coefficients and the cor-
rection due to the mb,PS mass [40,41] were taken into ac-
count in the A

(1)K∗

sp,nf and A
(1)
ver,f parts of the amplitude,

respectively. A comparison of the last-but-one row in this
table shows that for the same value of the quark mass
ratio mc/mb (= 0.29), the total amplitude has a negligi-
ble dependence on the choice of the b-quark mass: MS,
pole, or the PS b-quark mass. However, decreasing the
ratio mc/mb from 0.29 to 0.22, the amplitude is apprecia-
bly enhanced. The dependence of the total decay ampli-
tude squared |C(0)eff

7 (mb,pole)+A(1)(m̄b,pole)|2 (truncated
to the O(αs) accuracy) on the mass ratio mc/mb is pre-
sented in Fig. 9 (left plot). We also draw attention to the
marked scale-dependence of the amplitude squared (i.e.,
of the branching ratio B(B → K∗γ)). It is seen that for
z > 0.2 the amplitude squared becomes sensitive to this
mass ratio and falls down fast enough. A similar sensi-
tivity was observed in the inclusive B → Xsγ decay rate
[18].

Thus, for the central values of the input parameters,
we estimate the amplitude squared at the scale of the pole
b-quark mass as

|C(0)eff
7 (mb,pole) +A(1)(mb,pole)|2 � 0.147. (5.12)

In [15] such a detailed analysis of the amplitude was not
shown but the result was presented in the form of the total

amplitude squared:

|C7|2NLO = |C(0)eff
7 (mb,PS) +A(1)(mb,PS)|2 = 0.175+0.029

−0.026.

This value has to be compared with the entries given in the
last row (the last two columns) in Table 3. For the same
input parameters, these numbers are noticeably smaller
than the ones by Beneke et al [15].

To compare our evaluation of the amplitude for B →
K∗γ decay with the one presented in the paper by Bosch
and Buchalla [16], we recall that their calculations were
done in the approach where the QCD form factor T

(K∗)
1

(0, µ) was used and not its HQET/LEET analog ξ
(K∗)
⊥ (0).

The two form factors are related in O(αs) via the relation
[12]:

T
(K∗)
1 (0, m̄b) = ξ

(K∗)
⊥ (0)

(
1 +

αs(m̄b)
3π

[
ln

m2
b,pole

m̄2
b

− 1

]

+
αs(µ̄sp)
6π

∆F
(K∗)
⊥ (µ̄sp)

ξ
(K∗)
⊥ (0)

)

� 1.08 ξ(K
∗)

⊥ (0), (5.13)

where m̄b is the MS b-quark mass and µ̄sp =
√
ΛHm̄b �

1.47 GeV. We also recall that the form factor T (K∗)
1 (0, µ)

is a scale-dependent quantity. The B → K∗γ decay am-
plitude includes this from factor in combination with the
running MS b-quark mass m̄b(µ), and the scale depen-
dence of this product is governed by:

m̄b(µ)T
(K∗)
1 (0, µ) = m̄b(m̄b)T

(K∗)
1 (0, m̄b)

×
[
1 +

αs(µ)
π

CF ln
m̄2
b

µ2

]
.(5.14)

In addition to the form factor and b-quark mass, the am-
plitude also contains the quantity C7(µ) = C

(0)eff
7 (µ) +
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Fig. 9. The effective coefficient
squared in B(B → K∗γ) appearing
in (5.4) (left figure) and the ratio
of the exclusive B → K∗γ to the
inclusive B → Xsγ branching ra-
tios defined in (5.23) (right figure)
plotted against the ratio mc/mb for
three values of the scale µ

A(1)(µ). The transition to the QCD form factor and the
use of running b-quark mass changes C7(µ) in a way that
all the factorizable O(αs) corrections (i.e.,terms propor-
tional to C

(0)eff
7 (µ) in A(1)(µ)) are absorbed into T

(K∗)
1

(0, µ) and m̄b(µ). With this interpretation, we give be-
low the numerical estimates of the various contributions
to the decay amplitude in B → K∗γ calculated by us and
compare them with the equivalent quantities in [16], given
in the square brackets. For a meaningful comparison, the
values of the input parameters are taken from [16] with
mc/mb = 1.3 GeV/4.2 GeV � 0.31:

C
(0)eff
7 (4.2 GeV) = −0.321 [CLO

7 = −0.322],
A

(1)
C7
(4.2 GeV) = +0.011 [∆CNLO

7 = +0.011],

A
(1)
ver,nf(4.2 GeV) = −0.081− i 0.015

[T I1,8 = −0.082− i 0.015], (5.15)

A
(1)K∗

sp,nf (1.4 GeV) = −0.010− i 0.008

[T II1,8 = −0.014− i 0.011].

C
(0)eff
7 (4.2 GeV) +A(1)(4.2 GeV) = −0.401− i 0.023

[a7(K∗γ) = −0.407− i 0.026].

We agree with the other contributions but differ in the
evaluation of the spectator corrections; our estimate for
A

(1)K∗

sp,nf = T II1,8 is somewhat smaller than the one in [16].
From our analysis, we get for the amplitude squared at
the MS b-quark mass scale: |C7|2NLO = |C(0)eff

7 |2+2C(0)eff
7

Re(A(1)) � 0.154, which is slightly smaller than the cor-
responding value |C7|2NLO � 0.158, which can be obtained
from (55) of [16].

With the numerical estimates given above, and varying
the parameters in their stated ranges, we get the following
branching ratio for B → K∗γ decays:

Bth(B → K∗γ) � (6.8± 1.0)× 10−5
(

τB
1.6 ps

)

×
( mb,pole
4.65 GeV

)2
(

ξ
(K∗)
⊥
0.35

)2

= (6.8± 2.6)× 10−5, (5.16)

Table 4. Central values of the parameters and their ±1σ errors
used in estimating the quantity ξ

(K∗)
⊥ (0) and its error δξ(K∗)

⊥ (0)
from the branching ratio Bexp(B0 → K∗0γ). The parameters in
extracting ξ

(K∗)
⊥ (0) in the B+ → K∗+γ decay differ essentially

in the first two entries, and are discussed in the text

Parameter Value δξ
(K∗0)
⊥ (0)

Bexp(B0 → K∗0γ) (4.44 ± 0.35) × 10−5 ±0.012
τB0 (1.546 ± 0.018) ps ±0.002

|VtbV
∗

ts| 0.0396 ± 0.0020 ±0.016
mb,pole (4.65 ± 0.10) GeV ±0.006√
z = mc/mb 0.27 ± 0.06 +0.011

−0.006

fB (200 ± 20) MeV ±0.004
λ−1

B,+ (3 ± 1) GeV−1 ±0.012
f

(K∗)
⊥ (1 GeV) (185 ± 10) MeV ±0.002

a
(K∗)
⊥1 (1 GeV) 0.20 ± 0.05 ±0.001

a
(K∗)
⊥2 (1 GeV) 0.04 ± 0.04 ±0.0002

µ/mb,pole 0.5 − 2.0 ±0.009

ξ
(K∗0)
⊥ (0) 0.282 ± 0.027(th) ± 0.013(exp)

where the enlarged error in the second equation reflects
the assumed error in the nonperturbative quantity, ξ(K

∗)
⊥

(0) = 0.35± 0.07. This estimate of the branching ratio for
B → K∗γ is to be compared with the corresponding one
from [15] where a value Bth(B → K∗γ) = 7.9+3.5

−3.0×10−5 is
obtained. (Note that after some recalculations due to the
differences in the definition of the form factor the value
7.1× 10−5 obtained for τB0 = 1.56 ps in [16] becomes the
same as the one in [15]). If we use instead a value for the
b-quark pole mass mb,pole = 4.8 GeV, the branching ratio
we get is Bth(B → K∗γ) � (7.25±2.6)×10−5, which is ap-
proximately 8% smaller than the ones presented in [15,16].
All these estimates in the LEET approach are larger than
the experimental branching ratio for B → K∗γ, though
the attendant theoretical error, estimated as ±40%, does
not allow to draw a completely quantitative conclusion.

To quantify the price of agreement between the LEET
approach and data, we determine the value of the LEET-
form factor ξ

(K∗)
⊥ (0) from the current measurements. To
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Fig. 10. Branching ratios for the
decays B0 → K∗0γ (left figure)
and B+ → K∗+γ (right figure) as
functions of the LEET form factor
ξ
(K∗)
⊥ (0). Solid lines are the central
experimental and theoretically pre-
dicted values and the dotted lines
delimit the ±1σ errors in experi-
ment and theory, as discussed in the
text

that end, we show the theoretically predicted branching
ratios in the NLO accuracy for the decays B0 → K∗0γ
(left figure) and B+ → K∗+γ (right figure) in Fig. 10 and
the corresponding measured branching ratios (horizontal
bands), where the solid lines are the central values and
the dotted lines define their ±1σ ranges. Theoretical un-
certainties on the curves labeled as Bth are estimated from
all the parametric uncertainties, detailed in Table 4 for
the decay B0 → K∗0γ, where the last column contains
the errors due to the variation of the input parameters
resulting from the indicated ranges in the second column.
The pole b-quark mass is taken from a recent estimate of
the same in the NLO accuracymb,pole = (4.65±0.10) GeV
[42], and the B-meson decay constant in the same ac-
curacy is taken as fB = (200 ± 20) MeV [43,44]. The
enlarged error on the charm-to-bottom quark mass ra-
tio

√
z = mc/mb = 0.27 ± 0.06 in Table 4 deserves a

comment. We recall from a recent discussion of the inclu-
sive B → Xsγ branching ratio in the literature [18] that,
within the theoretical accuracy of the present calculations,
there exists an intrinsic uncertainty in the interpretation
of the quantity

√
z. It has been recently argued in [18]

that the inclusive branching ratio for B → Xsγ is uncer-
tain, depending on whether this ratio is interpreted as the
one involving the pole masses,

√
z = mc,pole/mb,pole, or as√

z = m̄c(µ)/mb,pole involving the charm quark mass in
the MS scheme with mc < µ < mb. Typical range for the
pole mass interpretation is

√
z = 0.29± 0.02, while in the

latter case the corresponding range is
√
z = 0.22 ± 0.04

[18]. This translates into an uncertainty of about 11% in
the inclusive decay rate. Not surprisingly, a correspond-
ing sensitivity on

√
z is also present in the decay rate

for the exclusive radiative decays. This has been shown
through the z-dependence of the matrix element squared
for the exclusive decay B → K∗γ in Fig. 9 (left plot). To
take into account the uncertainty in the decay rate from
this source, we use

√
z = 0.27 ± 0.06. It is seen from Ta-

ble 4 that the decay rate for B → K∗γ is not sensitive
to the variations in the K∗0-meson wave-function param-
eters (f (K∗)

⊥ , a(K∗)
⊥1 , and a

(K∗)
⊥2 ) in the indicated ranges, and

hence the derived errors on ξ
(K∗0)
⊥ (0) from these sources

are small. To get the overall theoretical error on ξ
(K∗0)
⊥ (0),

we have added all the individual theoretical errors (given
in rows 3 through 11) in quadrature. The errors from the
experimental input quantities (first two rows) are given
separately. The form factor ξ

(K∗+)
⊥ (0) extracted from the

B+ → K∗+γ branching ratio differs somewhat from the
one presented in Table 4 due to the difference in the B+-
and B0-meson lifetimes and the corresponding experimen-
tal branching ratios. Thus, present data and the NLO ex-
pressions in the LEET approach yield the following values
for ξ

(K∗)
⊥ (0):

ξ
(K∗0)
⊥ (0) = 0.28± 0.04 , (5.17)

ξ
(K∗+)
⊥ (0) = 0.25± 0.04 .

The central value of ξ
(K∗0)
⊥ (0) is marginally larger than

ξ
(K∗+)
⊥ (0) but they are consistent with each other within
1σ. It has been argued recently in [37] that the small
difference may be accounted for by taking into account
the isospin-violating contributions from an annihilation
contribution in the penguin operator O6 in the effective
weak Hamiltonian. With improved precision, it may be-
come necessary to include this contribution. As already
stated, we have ignored such isospin-violating contribu-
tions for the estimates presented for B → K∗γ decays in
this paper. We also note that the above determination of
ξ
(K∗0)
⊥ (0) and ξ

(K∗+)
⊥ (0) are in fair agreement with the one

presented in [15], (ξ(K
∗)

⊥ (0) = 0.24± 0.06).
The non-perturbative parameter ξ

(K∗)
⊥ (0) can also be

extracted from the ratio of the decay rates for the exclusive
decay B → K∗γ and the inclusive decay B → Xsγ. In
fact, one hopes that some of the parametric uncertainties
may be eliminated, or at least reduced, in this ratio. Two
particular parameters in point are the quark mass ratio

√
z

and the product of the CKM elements |VtbV ∗
ts|. Also, in

the experimental measurements some common systematic
errors may be eliminated from the ratio. The current world
average of the branching ratio for the inclusive B → Xsγ
decay is [22–24]:

Bexp(B → Xsγ) = (3.22± 0.40)× 10−4, (5.18)
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which yields the following exclusive to inclusive decay
width ratio:

Rexp(K∗γ/Xsγ) ≡ B̄exp(B → K∗γ)
Bexp(B → Xsγ)

= 0.13± 0.02,

(5.19)
where, as for the numerator, we have used an experi-
mental branching ratio averaged over the B± → K∗±γ
and B0(B̄0) → K∗0(K̄∗0)γ decays: B̄exp(B → K∗γ) =
(4.22± 0.28)× 10−5.

The theoretical expression for the inclusive branching
ratio, Bth(B → Xsγ), can be written as [4,17,18]:

Bth(B → Xsγ) = τB
G2
Fαm

5
b,pole

32π4 |V ∗
tsVtb|2 (5.20)

×
[∣∣∣C(0)eff

7 (µ) +A
(1)
incl(µ)

∣∣∣2 +B(µ, δ)
]
,

where δ is a lower cut on the photon energy in the brems-
strahlung corrections, Eγ,min = (1 − δ)mb,pole/2, in the
massless limit of the final s-quark. The functionA

(1)
incl is the

O(αs) corrections to the effective bsγ vertex while B(µ, δ)
describe the bremsstrahlung corrections originated by the
emission of a real gluon. To get the total branching ratio,
we should integrate over all possible photon energies which
corresponds to the limit δ → 1 in (5.20). In this limit, the
vertex and bremsstrahlung corrections are [4,18,17]:

A
(1)
incl(µ) =

αs(µ)
4π

{
C

(1)eff
7 (µ) + r2(z)C

(0)
2 (µ)

−2
9
(39 + 4π2)C(0)eff

7 (µ)

+
4
27
(33− 2π2 + 6πi)C(0)eff

8 (µ)

+
32
81

[
13C(0)

2 (µ) + 27C(0)eff
7 (µ)

−9C(0)eff
8 (µ)

]
ln

mb
µ

}
, (5.21)

B(µ, δ)|δ→1 =
αs(µ)

π

∑
i≤j=2,7,8

fij(δ)|δ→1

×C
(0)eff
i (µ)C(0)eff

j (µ), (5.22)

where the explicit forms of the functions r2(z) and fij(δ)
can be found in [4,17,18]. In the evaluation of the func-
tion f88(δ), which is divergent both in the s-quark massless
limit and δ → 1, we take, as advocated in [17], mb/ms �
50 and δ = 0.9. At NLO, the ratio R(K∗γ/Xsγ) can be
written as follows:

Rth(K∗γ/Xsγ) =
B̄th(B → K∗γ)
Bth(B → Xsγ)

=
[
ξ
(K∗)
⊥

]2 [ M

mb,pole

]3{
1 +

αs(µ)
π

[
1 +

4π2

9

]

+
2Re

[
A

(1)K∗
sp (µsp)

]
C

(0)eff
7 (µ)

− αs(µ)
π
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Fig. 11. The ratio of the exclusive B → K∗γ to the inclusive
B → Xsγ branching ratios, defined in (5.23), plotted as a
function of the LEET form factor ξ

(K∗)
⊥ (0) and the current

experimental measurement of this ratio. The solid lines are the
central experimental and theoretically predicted values and the
dotted lines delimit the ±1σ bands

×
∑

i≤j=2,7,8

fij(δ)|δ→1

C
(0)
i (µ)C(0)

j (µ)

|C(0)eff
7 (µ)|2

}
. (5.23)

The dependencies of this quantity on the charm-to-bottom
quark mass ratio

√
z and on the form factor ξ

(K∗)
⊥ (0) are

presented in Figs. 9 (the right plot) and 11, respectively.
It is seen that the ratio Rth(K∗γ/Xsγ) has a weaker de-
pendence on the ratio

√
z than the branching ratio for the

B → K∗γ decay, as this dependence is partially com-
pensated in the last two terms in (5.23). The numeri-
cal analysis allows to estimate the nonperturbative quan-
tity ξ

(K∗)
⊥ (0) as:

ξ
(K∗)
⊥ (0) = 0.25± 0.04 , (5.24)

in which half the error is contributed by experiment. This
coincides with the estimate of this quantity from the
B+ → K∗+γ branching ratio presented in (5.17), where
the error is dominated by theory. The average of the three
extracted values ((5.17) and (5.24)) is:

ξ̄
(K∗)
⊥ (0) = 0.26± 0.04,

[
T̄

(K∗)
1 (0, m̄b) = 0.28± 0.04

]
.

(5.25)
This estimate is significantly smaller than the correspond-
ing predictions from the QCD sum rules analysis T

(K∗)
1

(0) = 0.38± 0.06 [26,25] and from the lattice simulations
T

(K∗)
1 (0) = 0.32+0.04

−0.02 [27]. The reason for this mismatch
is not obvious and this point deserves further theoretical
study. We shall make some comments in the concluding
section.
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5.2 B → ργ decays

After comparing the LEET-based approach with experi-
ment in B → K∗γ decays, we now present the effect of
including the hard-spectator corrections on the branching
ratios in B → ργ decays and in the isospin-violating ratios
and CP-asymmetries in the decay rates.

We recall that ignoring the perturbative QCD correc-
tions to the penguin amplitudes the ratio of the branching
ratios for the charged and neutral B-meson decays can be
written as [10,2]

B(B− → ρ−γ)
2B(B0 → ρ0γ)

�
∣∣∣∣1 + εAeiφA

VubV
∗
ud

VtbV ∗
td

∣∣∣∣
2

, (5.26)

where εAeiφA includes the dominant W -annihilation and
possible sub-dominant long-distance contributions. Esti-
mates in the framework of the light-cone QCD sum rules
yield typically [8,9]: εA � −0.30±0.07 and εA � 0.03±0.01
for the decays B− → ρ−γ and B0 → ρ0γ, respectively,
which have also been confirmed in [10]. Moreover, it was
shown in [10] that the strong interaction phase φA dis-
appears in O(αs) in the chiral limit. Henceforth we set
φA = 0; the isospin-violating correction depends on the
unitarity triangle phase α due to the relation:

VubV
∗
ud

VtbV ∗
td

= −
∣∣∣∣VubV ∗

ud

VtbV ∗
td

∣∣∣∣ eiα = F1 + iF2 . (5.27)

The next-to-leading order vertex corrections for the
branching ratios of the exclusive decays B± → ρ±γ and
B0 → ρ0γ can be derived from the corresponding cal-
culations of the inclusive decays B → Xsγ, discussed in
the previous subsection, and B → Xdγ [45]. Ignoring the
hard-spectator corrections, but including the annihilation
contribution, the result was given in [2]:

Bth(B± → ρ±γ)
= τB+ Γth(B± → ρ±γ)

= τB+
G2
Fα|VtbV ∗

td|2
32π4 m2

b,pole M
3

(
1− m2

ρ

M2

)3

×
[
ξ
(ρ)
⊥ (0)

]2 {
(C(0)eff

7 +A
(1)t
R )2 + (F 2

1 + F 2
2 )

×(AuR + LuR)
2 + 2F1 [C

(0)eff
7 (AuR + LuR) +A

(1)t
R LuR]

∓2F2 [C
(0)eff
7 AuI − A

(1)t
I LuR]

}
, (5.28)

where ξ
(ρ)
⊥ (0) is the analogue of the quantity ξ

(K∗)
⊥ (0),

discussed at length in the context of the decays B →
K∗γ, and LuR = εA C

(0)eff
7 . Including the O(αs) hard-

spectator corrections to the matrix elements evaluated at
the scale µ, the function A(1)t is modified, and in addi-
tion the u-quark contribution Au from the penguin can no
longer be ignored. We decompose the amplitude A(1)t(µ)
in its three contributing parts:

A(1)t(µ) = A
(1)
C7
(µ) +A(1)

ver(µ) +A(1)ρ
sp (µsp), (5.29)

where the functions A(1)
C7
(µ) and A

(1)
ver(µ) have been defined

in (5.9) and (5.10), respectively, in the context of the B →
K∗γ decays. The functions A

(1)ρ
sp and Au(µ) are specific

to the decays B → ργ, and both involve hard spectator
contributions:

A(1)ρ
sp (µsp) =

αs(µsp)
24π

∆F
(ρ)
⊥ (µsp)

ξ
(ρ)
⊥ (0)

[
3C(0)eff

7 (µsp)

+ C
(0)eff
8 (µsp) + C

(0)
2 (µsp)

[
1− h(ρ)(z, µsp)

]]
,

Au(µ) =
αs(µ)
4π

C
(0)
2 (µ) [r2(z)− r2(0)]− αs(µsp)

24π

× C
(0)
2 (µsp)

∆F
(ρ)
⊥ (µsp)

ξ
(ρ)
⊥ (0)

h(ρ)(z, µsp), (5.30)

The terms proportional to∆F
(ρ)
⊥ (µsp) above are theO(αs)

hard-spectator corrections which should be evaluated at
the typical scale µsp =

√
µΛH of the gluon virtuality.

The complex function r2(z) of the parameter z = m2
c/m

2
b ,

and the Wilson coefficients in the above equations can
be found in [7,4]; the function h(ρ)(z, µ) and the dimen-
sionless quantity ∆F

(ρ)
⊥ (µ) are defined through (4.15) and

(4.9), respectively. The subscripts R and I in (5.28) de-
note the real and imaginary parts of A(1)t and Au. The
hard-spectator corrections contribute to both the real and
imaginary parts of A(1)t and Au. They do not depend on
the charge of the spectator quark in B0- or B±-mesons,
and hence are isospin-conserving. Isospin violations enter
mainly via the W -annihilation contribution, and they are
suppressed in B0-meson decays as LuR(B

0) � LuR(B
±).

To simplify the theoretical expressions somewhat, and
in view of the smallness of the branching ratios, we would
like to present our numerical results in this section in
terms of the charge-conjugate averaged branching ratios:

Bth(B± → ρ±γ)

=
1
2
[Bth(B+ → ρ+γ) + Bth(B− → ρ−γ)

]
,

Bth(B0 → ρ0γ)

=
1
2
[Bth(B0 → ρ0γ) + Bth(B̄0 → ρ0γ)

]
. (5.31)

Theoretical expressions for these quantities can be eas-
ily obtained from the branching ratios (5.28) by neglect-
ing the sign-dependent part. Unless otherwise stated, the
results shown below imply an average over the charge-
conjugate states.

To illustrate the effect of the NLO corrections on the
branching ratios for B → ργ decays, we show the relative
NLO corrections B̄NLO

th /B̄LO
th − 1 to the B± → ρ±γ and

B0 → ρ0γ decay rates as functions of the CP phase α in
Fig. 12. All other input parameters are fixed to their cen-
tral values given earlier. What concerns the CKM param-
eters, we take the ranges for the Wolfenstein parameters
from the unitarity fits, yielding [46–48]:

ρ̄ = 0.20± 0.07, η̄ = 0.39± 0.07. (5.32)



106 A. Ali, A.Ya. Parkhomenko: Branching ratios for B → K∗γ and B → ργ decays

Table 5. Central values of the partial amplitudes in B → ργ and B → K∗γ
decays. The column WC + VC is sum of the NLO corrections in the Wilson
coefficients (WC) and vertex corrections (VC) which are estimated at the scale µ =
mb,pole = 4.65 GeV; the column HSC contains the hard-spectator contributions
evaluated at the scale µsp = 1.52 GeV; and in the last column the total amplitudes
(WC+VC+HSC) are presented

WC + VC HSC total

A(1)t(ργ) −0.0428 − i 0.0177 −0.0515 − i 0.0197 −0.0943 − i 0.0374
Au(ργ) +0.0479 + i 0.0485 −0.0476 − i 0.0197 +0.0003 + i 0.0288
A(1)(K∗γ) −0.0428 − i 0.0177 −0.0507 − i 0.0184 −0.0934 − i 0.0362

They in turn lead to the ranges |Vub/Vtd| = 0.49 ± 0.09
and α varying in the range 77◦ ≤ α ≤ 113◦, with α =
93◦ as the central value. We will show this range of α by
a vertical band in most of the figures presented below.
We note from Fig. 12 that the NLO vertex and the hard-
spectator corrections are comparable, of order (25− 30)%
each, increasing the branching ratio altogether by about
(50−60)% in B → ργ decays in the range of α favored by
the SM constraints. Note that the total NLO correction
for the B0 → ρ0γ decays has a very weak dependence on
the angle α.

We now proceed to calculate numerically the branch-
ing ratios for the decays B± → ρ±γ and B0 → ρ0γ with
the help of (5.1) and (5.2). The theoretical ratio involving
the theoretical decay widths on the r.h.s. of these equa-
tions can be written in the form

Bth(B → ργ)
Bth(B → K∗γ)

= Sρ

∣∣∣∣VtdVts

∣∣∣∣
2 (1− m2

ρ/M
2)3

(1− m2
K∗/M2)3

×ζ2 [1 +∆R(ρ/K∗)] , (5.33)

where ζ is the ratio of the HQET form factors and Sρ =
1(1/2) for ρ±- (ρ0-) meson. In the SU(3)-symmetry limit,
ξ
(ρ)
⊥ (0) = ξ

(K∗)
⊥ (0), yielding ζ = 1. SU(3)-breaking effects

in the QCD form factors T
(K∗)
1 (0) and T

(ρ)
1 (0) have been

evaluated within the QCD sum-rules [28]. These can be
taken to hold also for the ratio of the HQET form factors.
Thus, we take

ζ =
T

(ρ)
1 (0)

T
(K∗)
1 (0)

� 0.76± 0.06. (5.34)

Taking this and (5.25) into account, we obtain:

ξ
(ρ)
⊥ (0) = 0.200± 0.035, (5.35)

which can be used in numerical analysis.
The theoretical expression for dynamical function

∆R(ρ/K∗) can be written as follows:

∆R(ρ/K∗) = 2εA F1 + ε2A(F
2
1 + F 2

2 ) +
2

C
(0)eff
7

×Re
[
A(1)ρ

sp − A(1)K∗
sp + F1(Au + εAA

(1)t)

+εA(F 2
1 + F 2

2 )A
u
]
. (5.36)

For the numerical calculations of ∆R(ρ/K∗), we recall
that the vertex and the hard-spectator corrections are
evaluated at different scales: for the former we use the
scale of the b-quark mass (pole mass mb,pole = 4.65 GeV
in our analysis) and for the last the typical scale is µsp =
1.52 GeV. The combined Wilson coefficient and vertex
contributions (WC+VC), the hard-spectator contribu-
tions (HSC), and the total contributions (WC+VC+HSC)
to the functions A(1)t(ργ), A(1)(K∗γ) and Au(ργ) are pre-
sented in Table 5. They correspond to the central values
of the input parameters specified earlier. For the assumed
input parameters, it is seen that the vertex and hard-
spectator contributions (WC+VC and HSC) in A(1)t(ργ)
and A(1)(K∗γ) are of the same sign and comparable to
each other. The small difference in the HSC parts is due
to SU(3)-breaking effects in the ratio of ∆F

(V )
⊥ (defined

in (4.9)) and ξ
(V )
⊥ (0). For the ρ- and K∗-mesons, their

central values are estimated to be:

∆F
(ρ)
⊥ (µsp)

ξ
(ρ)
⊥ (0)

� 8.18,
∆F

(K∗)
⊥ (µsp)

ξ
(K∗)
⊥ (0)

� 7.54,

where the values of ξ(K
∗)

⊥ (0), ξ(ρ)⊥ (0) and ∆F
(V )
⊥ (µsp) are

taken from (5.25), (5.35) and Table 1, respectively. The
main uncertainty (∼ 30%) in these ratios originates from
the first negative moment of the B-meson λ−1

B,+. The con-
tributions toAu(ργ) from the vertex and the hard-spectator
corrections have opposite signs, and the real part of the
sum is rather small. For the numerical estimates, one also
needs to know the CKM-functions F1 and F2 defined by
(5.27). In the analysis the central value resulting from the
CKM fits:

√
F 2

1 + F 2
2 � |Vub/Vtd| = 0.49 is used. The dy-

namical functions ∆R(ρ±/K∗±) and ∆R(ρ0/K∗0) for the
B± → ρ±γ and B0 → ρ0γ are presented in Fig. 13. It
is seen that taking into account the hard-spectator cor-
rections both in the charged and neutral B-meson decays
makes the branching rates in the leading (LO) [the dotted
lines in Fig. 13] and next-to-leading (NLOtot) [the solid
lines in Fig. 13] close to each other. The dependences of
the dynamical function ∆R(ρ±/K∗±) on the CKM an-
gle α and on the quark mass ratio

√
z = mc/mb are

presented in Fig. 14. The solid lines correspond to the
scale µ = mb,pole. It is seen that the dashed lines rep-
resenting the µ = mb,pole/2 and µ = 2mb,pole results are
very close to each other. Notice also the mild dependence
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Fig. 12. The relative NLO correc-
tions (in percentage) to the charge-
conjugate averaged branching ra-
tios B̄th(B± → ρ±γ) (left figure)
and B̄th(B0 → ρ0γ) (right figure)
as functions of the unitarity trian-
gle angle α without (dashed curves)
and with (solid curves) the hard-
spectator corrections. The ±1σ al-
lowed band of α from the SM uni-
tarity fits is also indicated
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the quark mass ratio

√
z = mc/mb

(right figure). The solid curves cor-
respond to the scale µ = mb,pole

and the dotted curves delimit the
variation in the range mb,pole/2 ≤
µ ≤ 2mb,pole. The ±1σ allowed
band of α from the SM unitarity fits
is also indicated

of ∆R(ρ±/K∗±) on the quark mass ratio
√
z. The main

uncertainties in the dynamical functions come from the
uncertainties in the CKM angle α and the nonperturba-
tive parameters ξ

(ρ)
⊥ (0) and ξ

(K∗)
⊥ (0) which can be seen,

in particular, for the B± → ρ±γ decay from Table 6. The
function ∆R(ρ0/K∗0) involving the neutral B-meson de-
cays can be similarly calculated. The allowed ranges of the
two functions are estimated to be:∣∣∆R(ρ±/K∗±)

∣∣ ≤ 0.15 ,
∣∣∆R(ρ0/K∗0)

∣∣ ≤ 0.09 . (5.37)

The central values of both these functions are close to
zero, and they impart an uncertainty ∼ 15% and ∼ 9% to
the ratios (5.33) of the B± → ρ±γ to B± → K∗±γ and
B0 → ρ0γ to B0 → K∗0γ branching ratios, respectively.

The product of the CKMmatrix elements |VtbV ∗
td| from

(5.28) can be estimated by using the CKM fits, which gives

|VtbV ∗
td| = 0.0077± 0.0011 . (5.38)

Taking into account the value |VtbV ∗
ts| = 0.0396 ± 0.0020

(5.7), we get:
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Fig. 15. Branching ratios B(B± →
ρ±γ) (left figure) and (B0 → ρ0γ)
(right figure) in the NLO-LEET ap-
proach as functions of the CKM
matrix element ratio |Vtd/Vts|. The
solid curves represent the central
values and the dashed curves de-
limit the theoretical ±1σ variations;
the vertical bands show the SM
favoured range: |Vtd/Vts| = 0.194±
0.029

∣∣∣∣VtdVts

∣∣∣∣ = 0.194± 0.029 , (5.39)

which allows to predict the values for the branching ratios
for B → ργ decays with the help of (5.1), (5.2), and (5.33).
The branching ratios for B± → ρ±γ and B0 → ρ0γ decays
are presented in Fig. 15. The vertical bands in these plots
delimit the ±1σ range for |Vtd/Vts| given in (5.39). Due
to the present analysis, the B → ργ branching ratios can
be estimated as

B̄th(B± → ρ±γ) = (0.85± 0.30[th]± 0.10[exp])× 10−6,

B̄th(B̄0 → ρ0γ) = (0.49± 0.17[th]± 0.04[exp])× 10−6,

(5.40)

where the SM favoured range 77◦ ≤ α ≤ 113◦ [46–48]
was used. In the above estimates, the first error is defined
by the uncertainties of the theory and the second is from
the direct experimental data on the B → K∗γ branching
ratios (5.3).

These estimates can be compared with the ones ob-
tained in the QCD sum rule approach of [8]: B(B± →
ρ±γ) = (1.9 ± 1.6) × 10−6 and B(B0 → ρ0γ) = (0.85 ±
0.65) × 10−6, in which only the leading order QCD cor-
rections in αs and annihilation contributions were taken
into account. The central values of the estimates presented
here are typically a half of the corresponding values in [8],
and the errors in our case are significantly smaller. As
shown in (5.37), the theoretical improvement discussed in
the present paper has only a marginal impact on the ratio
R(ργ/K∗γ), used here and in [8]. The source of the larger
values in [8] is to be traced back to the differences in the
input values of the CKM parameters and the experimen-
tal branching ratios for B → K∗γ in the two calculations.
Present measurements have decreased the allowed range
of the ratio |Vtd/Vts|, compared to what was assumed
in [8]. Moreover, the branching ratios B(B → K∗γ) are
now more precisely measured and are found to be smaller
than the experimental values en vogue in 1995. These two
circumstances, in turn, reduce the central values of the
branching ratios B(B± → ρ±γ) and B(B0 → ρ0γ), and
the residual uncertainty is also reduced. We also wish to

Table 6. Input parameters and the assumed errors used in the
evaluation of the function∆R(ρ±/K∗±), defined in (5.36). The
resulting errors δR(ρ±/K∗±) are given in the last column. The
central value of ∆R(ρ±/K∗±) and the ±1σ errors obtained by
quadrature are given in the last row

Parameter Value δR(ρ±/K∗±)

α 93◦+20◦
−16◦ +0.1065/ − 0.1300

ξ
(ρ)
⊥ (0) 0.200 ± 0.035 +0.0651/ − 0.0457

ξ̄
(K∗)
⊥ (0) 0.260 ± 0.040 +0.0429/ − 0.0585

f
(ρ)
⊥ (1 GeV) (160 ± 10) MeV ±0.0192

f
(K∗)
⊥ (1 GeV) (185 ± 10) MeV ±0.0174√
z = mc/mb 0.27 ± 0.06 +0.0124/ − 0.0019

a
(K∗)
⊥1 (1 GeV) 0.20 ± 0.05 ±0.0124

a
(ρ)
⊥2(1 GeV) 0.20 ± 0.10 ±0.0102

εA −0.30 ± 0.07 +0.0067/ − 0.0043
λ−1

B,+ (3 ± 1) GeV−1 ±0.0050

|Vub/Vtd| =
√

F 2
1 + F 2

2 0.49 ± 0.09 +0.0051/ − 0.0036

a
(K∗)
⊥2 (1 GeV) 0.04 ± 0.04 ±0.0038

µ/mb,pole 0.5 − 2.0 +0.0023/ − 0.0020
fB (200 ± 20) MeV ±0.0015
mb,pole (4.65 ± 0.10) GeV ±0.0005

∆R(ρ±/K∗±) 0.003 ± 0.144

point out that the estimate of the B− → ρ−γ decay rate
presented in [16] allows a substantially larger uncertainty:
B(B− → ρ−γ) = (1.2 − 3.6) × 10−6, reflecting the larger
parametric uncertainties in the branching ratio, as well as
the fact that the NLO corrections increase the individ-
ual branching ratios by typically 60%. As shown in (5.37),
these corrections largely cancel in the ratio. Hence, our
predictions for B(B → ργ) are typically half as large as
the ones given in [16]. Finally, compared to the present
experimental bounds (at 90%C.L.) [49]: B(B± → ρ±γ) <
0.99×10−5 and B(B0 → ρ0γ) < 1.06×10−5, one needs to
cover an order of magnitude to reach the SM sensitivity
in these decays. This should be possible at the present B
factories.
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6 Isospin-violating ratios and CP-violating
asymmetries in B → ργ decays

We now compute the isospin-violating ratios:

∆±0 =
Γ (B± → ρ±γ)

2Γ (B0(B̄0) → ρ0γ)
− 1 . (6.1)

These ratios deviate from zero (the isospin symmetry
limit) due to the interference of the short distance pen-
guin amplitudes and long distance tree amplitudes, where
the latter are given by the lowest order annihilation con-
tributions, as the O(αs)-contribution to the annihilation
amplitude vanishes in the chiral limit in the leading-twist
approximation [10]. We present our numerical analysis for
the charge-conjugate averaged ratio:

∆ =
1
2
[
∆+0 +∆−0] , (6.2)

which is expressed in the NLO perturbative QCD as [2]:

∆LO � 2εA

[
F1 +

1
2
εA (F 2

1 + F 2
2 )
]
, (6.3)

∆NLO � ∆LO − 2εA
C

(0)eff
7

[
F1A

(1)t
R + (F 2

1 − F 2
2 )A

u
R

+εA(F 2
1 + F 2

2 )(A
(1)t
R + F1A

u
R)
]
, (6.4)

where ∆LO is the leading-order charge-conjugate averaged
ratio. The NLO quantity ∆NLO is sensitive to the hard-
spectator corrections which are contained in the O(αs)
functions A

(1)t
R (5.29) and AuR (5.30).

The ratio ∆ is shown as a function of the inner angle α
in Fig. 16. The solid curve shows the complete O(αs)-
corrected ratio including the vertex and hard spectator
corrections, calculated using (6.4), the dashed curve shows
this ratio when only the vertex corrections are included,
and the dotted curve shows the lowest order result, ob-
tained using (6.3). We note that taking into account the
spectator corrections slightly modifies the O(αs) vertex-
corrected result, obtained in [2]. Thus, even if one takes a
generous error on this quantity, the theoretical precision
of ∆NLO is not perceptibly influenced by the uncertainty
in ∆F

(ρ)
⊥ entering in the hard spectator correction. We

also note that the region of α where the NLO corrections
are large is not favored by the CKM unitarity constraints
in the SM, which yield typically 77◦ ≤ α ≤ 113◦ [46–48].

In [16] the charge-conjugate averaged ratio ∆ was
found to have an opposite sign than the one obtained in
[2]. Our result agrees with the one given in the latter of
these references. We would also like to point out that the
dependence of ∆ on the inner angle α, shown extensively
by us in presenting our numerical results, emerges natu-
rally from (5.27).

Finally, we discuss the direct CP-asymmetry in the
B± → ρ±γ decay rates:

ACP(ρ±γ) =
B(B− → ρ−γ)− B(B+ → ρ+γ)
B(B− → ρ−γ) + B(B+ → ρ+γ)

. (6.5)
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Fig. 16. The charge-conjugate averaged ratio ∆ for B → ργ
decays defined in (6.1) as a function of the unitarity triangle an-
gle α in the leading order (dotted curve), next-to-leading order
without (dashed curve) and with (solid curve) hard-spectator
corrections. The ±1σ allowed band of α from the SM unitarity
fits is also indicated

The CP-asymmetry arises from the interference of the
penguin operator O7 and the four-quark operator O2 [5,
6]. The expression for the CP-asymmetry in B± → ρ±γ
decays can be written as [2]:

ACP(ρ±γ) =
2F2

(
AuI − εAA

(1)t
I

)
C

(0)eff
7 (1 +∆LO)

, (6.6)

where ∆LO is the charge-conjugate averaged ratio in the
leading order (6.3). Note that due to the charm quark
mass dependence of the hard-spectator corrections, which
enters through the function h(ρ)(z) (4.15), the functions
A(1)t and Au are modified compared to their vertex con-
tributions. More importantly for the CP asymmetry, the
hard spectator contributions are complex. The resulting
numerical changes in the functions Au(ργ) and A(1)t(ργ),
and in their imaginary parts, are illustrated in Table 5.
The dependence on the angle α of the CP-asymmetry
ACP(ρ±γ) is presented in the left plot in Fig. 17. It is
seen that the CP-asymmetry is suppressed by the hard-
spectator corrections. In the SM favoured interval for α,
77◦ ≤ α ≤ 113◦, the direct CP-asymmetry ACP(ρ±γ)
takes its maximum value, reaching about 5%, which is
nearly half as small as its value without the hard spec-
tator corrections. It was pointed out in [16] that the CP-
asymmetry ACP(ρ±γ) shows a marked dependence on the
scale µ. This can be seen in the right hand plot in Fig. 17,
where we show additionally the dependence of this quan-
tity on the value of the quark mass ratio

√
z = mc/mb. In

the region 0.2 ≤ √
z ≤ 0.3, the CP-asymmetry ACP(ρ±γ)

increases rapidly changing its sign from negative to pos-
itive. Hence, without knowing precisely the value of the
quark mass ratio (

√
z) and the scale µ, it is difficult to
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Fig. 17. Left figure: Direct CP-asymmetry
in the decays B± → ρ±γ as a function
of the unitarity triangle angle α without
(dotted curves) and with (solid curves)
the hard-spectator corrections. The ±1σ
allowed band of α from the SM unitar-
ity fits is also indicated. Right figure: Di-
rect CP-asymmetry in the decays B± →
ρ±γ as a function of the quark mass ra-
tio

√
z = mc/mb; the scale dependence of

the asymmetry is shown in the interval:
mb,pole/2 ≤ µ ≤ 2mb,pole

quantify ACP(ρ±γ). However, in all likelihood |ACP(ρ±γ)|
< 10% in the SM.

7 Summary and concluding remarks

We summarize our main results and offer some remarks
on the underlying theoretical framework. We have com-
puted the hard-spectator corrections in O(αs) and lead-
ing order in ΛQCD/M to the decay widths for B → K∗γ
and B → ργ, in the leading-twist approximation, using
the Large Energy Effective Theory. This is then combined
with the existing contributions from the vertex corrections
and the annihilation amplitudes to arrive at the NLO ex-
pressions for the corresponding decay rates. The annihi-
lation contributions are important only in the B → ργ
decays due to the favourable CKM structure. The matrix
elements for these decays inO(αs), and to leading power in
ΛQCD/M , are finite, also including the intermediate charm
quark contributions from the penguin diagrams, correct-
ing an earlier version of this paper, and providing an ex-
plicit proof of the factorization Ansatz of (2.4) advocated
by Beneke et al. [11,12]. For radiative decays B → V γ,
these proofs have also been provided in the meanwhile
in [16,15]. We have made extensive comparisons of our
derivations and numerical estimates with the ones pre-
sented in these papers, pointing out the agreements and
some numerical differences related to the hard-spectator
corrections. The NLO corrections in the decay rates are
substantial, with the branching ratios increasing typically
by 60% in the NLO approximation. Approximately, a half
of this enhancement is due to the vertex corrections, which
are common between the corresponding inclusive and ex-
clusive radiative decay rates.

The branching ratios for the decays B → K∗γ in the
NLO accuracy are then compared with current data to de-
termine the form factor ξ

(K∗)
⊥ (0) in the LEET approach.

For this purpose we have used the measured values of
the branching ratios for B → K∗γ and B → Xsγ, get-
ting ξ

(K∗)
⊥ (0) = 0.26 ± 0.04, taking into account various

parametric uncertainties and experimental errors. Con-
verting it to the form factor in the full QCD, using a
relation correct to leading order in αs and ΛQCD/M [12],
yields T

(K∗)
1 (0, m̄b) = 0.28 ± 0.04, to be compared with

the estimates T
(K∗)
1 (0, m̄b) = 0.38 ± 0.06 [25,26], and

T
(K∗)
1 (0, m̄b) = 0.32+0.04

−0.02 [27], obtained using the LC-
QCD sum rule and Lattice-QCD approaches, respectively.
Thus, the form factor in the LEET-based factorization
approach, combined with current data, is found to be
typically (15 − 30)% smaller than the ones in the LC-
QCD/Lattice-QCD approaches. Another way to judge the
same issue is to use the central value of the form factor
ξ
(K∗)
⊥ (0) = 0.35 extracted from the LC-QCD sum rules as
input and calculate the branching ratio for B → K∗γ in
the LEET approach. This yields B(B → K∗γ) = (6.8 ±
1.0) × 10−5, compared to the current experimental value
of Bexp(B → K∗γ) = (4.22± 0.28)× 10−5, where we have
averaged the theory and experiment over the B±- and
B0/B̄0-decay modes. Thus, the LEET-based branching
ratio is found to be significantly larger than data, though
the underlying parametric uncertainties can be used to
reduce this difference to some extent (see, (5.16)). This
discrepancy, while not overwhelming, is discomfortingly
large for a precision test of the SM using the exclusive de-
cay rates. Improved data may bridge this gap, bringing in
line the LEET-based branching ratios with data, or equiv-
alently the form factors in this approach with the ones in
the other two QCD methods. This remains to be seen.
Of course, also in the sum rule and lattice approaches to
QCD, the desired theoretical accuracy on the form factors
is not yet reached. However, despite its tentative nature,
the current mismatch between the LEET-based and the
other two QCD results in the B → V γ sector may after all
turn out to be symptomatic of a generic problem afflicting
the LEET approach, having to do with the inadequacy
of power corrections in exclusive two-body decays in its
present formulation. This, despite the fact that the un-
derlying framework, as formulated in [11,15,16] and also
applied in this paper, rests firmly on perturbative QCD
factorization, with the argument made even more persua-
sive by an all order proof of factorization in the strong
coupling [50,51].

What concerns the decay rates in the B → ργ decays,
we have argued that a more reliable route theoretically
is to calculate them via the ratio of the branching ratios
B(B → ργ)/B(B → K∗γ), defined in (5.33), using ex-
perimental measurement of the B → K∗γ decay rates.
This ratio depends essentially on the CKM matrix ele-
ment squared |Vtd/Vts|2, given the non-perturbative quan-
tity ζ = ξ

(ρ)
⊥ (0)/ξ(K

∗)
⊥ (0) and a dynamical function called

∆R(ρ/K∗), involving the vertex, hard-spectator and an-
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nihilation contributions, which is derived and analyzed in
this paper. Taking into account various parametric un-
certainties, we find that ∆R(ρ/K∗) is constrained in the
range |∆R(ρ/K∗)| ≤ 0.15, with the central value around
∆R(ρ/K∗) � 0. This quantifies the statement that the ra-
tio B(B → ργ)/B(B → K∗γ) is stable against O(αs) and
1/M -corrections. As shown in this paper, the same does
not hold for the individual branching ratios B(B → ργ)
and B(B → K∗γ). Thus, apart from the dependence on
the CKM factor |Vtd/Vts|, whose determination is the prin-
cipal interest in measuring the ratio B(B → ργ)/B(B →
K∗γ), the dynamical uncertainties are estimated not to
exceed ±15%. Using the current branching ratio Bexp
(B± → K∗±γ) = (3.82±0.47)×10−5, the SU(3)-breaking
estimate from the LC-QCD sum rule [28], yielding ζ =
0.76 ± 0.06, and ∆R(ρ/K∗), calculated in this paper, we
find B(B± → ρ±γ) = (0.85 ± 0.40) × 10−6, where the
present range for the CKM ratio as determined from the
unitarity fits, |Vtd/Vts| = 0.19 ± 0.03, is folded in the er-
ror. The corresponding branching ratio for the neutral B-
meson decay mode in the same approach is estimated to
be: B(B0 → ρ0γ) = (0.49 ± 0.21) × 10−6. The isospin-
violating ratios ∆±0 and its charge-conjugate average ∆
for the decays B → ργ are found to be likewise stable
against the NLO and 1/M -corrections, In the expected
range of the CKM parameters, we find |∆| ≤ 10%.

The CP-asymmetry ACP(ρ±γ) receives contributions
from the hard-spectator corrections which tend to de-
crease its value estimated from the vertex corrections
alone. Unfortunately, the predicted value of the CP-
asymmetry is sensitive to both the choice of the scale, as
already pointed out in [16], and the quark mass ratio

√
z =

mc/mb. Typical values lie around 5%, but the uncertainty
is rather large, resulting in the range |ACP(ρ±γ)| < 10%.

In conclusion, exclusive radiative decays B → ργ and
B → K∗γ (and their semileptonic counterparts) provide
an excellent laboratory to test the underlying theory
(LEET) and ideas on perturbative non-factorizing correc-
tions put forward by Beneke et al. [11] in the context of
B → ππ and B → πK decays. These latter decays are
more involved due to the presence of two strongly inter-
acting particles in the final state and the underlying frame-
work is more tractable in radiative and semileptonic de-
cays. Precise measurements of the radiative and semilep-
tonic decay branching ratios and the related isospin and
CP-asymmetries will test this theoretical framework. We
have given a fairly detailed phenomenological profile of the
radiative decays B → K∗γ and B → ργ in this paper, and
have pointed out some phenomenological issues in this ap-
proach related to understanding the current experimental
branching ratios for B → K∗γ decays, which will have
to be resolved on our way to a completely quantitative
theory of exclusive radiative decays.
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